Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1789–1816 | Cite as

ESPResSo 4.0 – an extensible software package for simulating soft matter systems

  • Florian WeikEmail author
  • Rudolf Weeber
  • Kai Szuttor
  • Konrad Breitsprecher
  • Joost de Graaf
  • Michael Kuron
  • Jonas Landsgesell
  • Henri Menke
  • David Sean
  • Christian HolmEmail author
Regular Article
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

ESPResSo is an extensible simulation package for research on soft matter. This versatile molecular dynamics program was originally developed for coarse-grained simulations of charged systems [H.J. Limbach et al., Comput. Phys. Commun. 174, 704 (2006)]. The scope of the software has since broadened considerably: ESPResSo can now be used to simulate systems with length scales spanning from the molecular to the colloidal. Examples include, self-propelled particles in active matter, membranes in biological systems, and the aggregation of soot particles in process engineering. ESPResSo also includes solvers for hydrodynamic and electrokinetic problems, both on the continuum and on the explicit particle level. Since our last description of version 3.1 [A. Arnold et al., Meshfree methods for partial di_erential equations VI, Lect. Notes Comput. Sci. Eng. 89, 1 (2013)], the software has undergone considerable restructuring. The biggest change is the replacement of the Tcl scripting interface with a much more powerful Python interface. In addition, many new simulation methods have been implemented. In this article, we highlight the changes and improvements made to the interface and code, as well as the new simulation techniques that enable a user of ESPResSo 4.0 to simulate physics that is at the forefront of soft matter research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, Rev. Mod. Phys. 64, 645 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    M. Doi, Soft matter physics (Oxford University Press, Hardcover, 2013)Google Scholar
  3. 3.
    J.-L. Barrat, J.-P. Hansen, Basic concepts fo simple and complex liquids (Cambridge University Press, Cambridge, 2003)Google Scholar
  4. 4.
    M. Doi, S.F. Edwards, in The theory of polymer dynamics (Oxford University Press, 1988), Vol. 73Google Scholar
  5. 5.
    M. Rubinstein, R.H. Colby, Polymer physics (Oxford University Press, Oxford, UK, 2003)Google Scholar
  6. 6.
    E.J. Verwey, J.T.G. Overbeek, Theory of the stability of lyophobic colloids (Elsevier, Amsterdam, 1948)Google Scholar
  7. 7.
    H. Löwen, J. Phys.: Condens. Matter 13, R415 (2001)ADSGoogle Scholar
  8. 8.
    S. Chandrasekhar, Liquid crystals (Cambridge University Press, Cambridge, 1992)Google Scholar
  9. 9.
    I.V. Hamley, Introduction to soft matter (Wiley, Chichester, 2003)Google Scholar
  10. 10.
    P. Nelson, Biological physics – energy, information, life (Freeman, New York, 2004)Google Scholar
  11. 11.
    I. Levental, P.C. Georges, P.A. Janmey, Soft Matter 3, 299 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ubbink, A. Burbidge, R. Mezzenga, Soft Matter 4, 1569 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    S. Polarz, M. Antonietti, Chem. Commun. 22, 2593 (2002) CrossRefGoogle Scholar
  14. 14.
    K. Kroy, E. Frey, Ann. Phys. 14, 20 (2005) CrossRefGoogle Scholar
  15. 15.
    D. Frenkel, Science 296, 65 (2002)CrossRefGoogle Scholar
  16. 16.
    U. Seifert, Rep. Progr. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M.E. Cates, Rep. Progr. Phys. 75, 042601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    É. Fodor, M. Marchetti, Physica A 504, 106 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)ADSCrossRefGoogle Scholar
  20. 20.
    B. Alder, T. Wainwright, Phys. Rev. 127, 359 (1962)ADSCrossRefGoogle Scholar
  21. 21.
    P. Pusey, W.C. Poon, S. Ilett, P. Bartlett, J. Phys.: Condens. Matter 6, A29 (1994)ADSGoogle Scholar
  22. 22.
    M.A. Bates, D. Frenkel, J. Chem. Phys. 109, 6193 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    R. van Roij, M. Dijkstra, J.-P. Hansen, Phys. Rev. E 59, 2010 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M.E. Leunissen, C.G. Christova, A.P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    P.J. Camp, J.C. Shelley, G.N. Patey, Phys. Rev. Lett. 84, 115 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Wang, C. Holm, H.W. Müller, Phys. Rev. E 66, 021405 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    S.H.L. Klapp, M. Schoen, J. Mol. Liq. 109, 55 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Klinkigt, R. Weeber, S. Kantorovich, C. Holm, Soft Matter 9, 3535 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M.J. Stevens, K. Kremer, Phys. Rev. Lett. 71, 2228 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    A.V. Dobrynin, M. Rubinstein, S.P. Obukhov, Macromolecules 29, 2974 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    U. Micka, C. Holm, K. Kremer, Langmuir 15, 4033 (1999)CrossRefGoogle Scholar
  32. 32.
    H.J. Limbach, C. Holm, K. Kremer, Europhys. Lett. 60, 566 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S. Schneider, P. Linse, Eur. Phys. J. E 8, 457 (2002)CrossRefGoogle Scholar
  34. 34.
    Q. Yan, J.J. de Pablo, Phys. Rev. Lett. 91, 018301 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Mann, R. Everaers, C. Holm, K. Kremer, Europhys. Lett. 67, 786 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    R. Weeber, S. Kantorovich, C. Holm, Soft Matter 8, 9923 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    R. Weeber, M. Hermes, A.M. Schmidt, C. Holm, J. Phys.: Condens. Matter 30, 063002 (2018)ADSGoogle Scholar
  38. 38.
    S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    H.V. Guzman, H. Kobayashi, N. Tretyakov, A.C. Fogarty, J. Krajniak, C. Junghans, K. Kremer, T. Stuehn, arXiv:1806.10841 (2018)
  40. 40.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29, 845 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R.D. Skeel, K. Schulten, Int. J. Supercomput. Appl. 10, 251 (1996)Google Scholar
  44. 44.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  45. 45.
    J.C. Phillips, J.E. Stone, K.L. Vandivort, T.G. Armstrong, J.M. Wozniak, M. Wilde, K. Schulten, in Proceedings of the 1st first workshop for high performance technical computing in dynamic languages (IEEE Press, New York, 2014), p. 6Google Scholar
  46. 46.
    D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, I.T.E. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Comput. Phys. Commun. 91, 1 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. Woods, J. Comput. Chem. 26, 1668 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan, C. Holm, in Meshfree methods for partial differential equations VI, Lecture Notes in Computational Science and Engineering, edited by M. Griebel, M.A. Schweitzer(Springer, Berlin Heidelberg, 2013), Vol. 89, pp. 1–23Google Scholar
  49. 49.
    M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    M. Deserno, C. Holm, J. Chem. Phys. 109, 7694 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    A. Arnold, C. Holm, Comput. Phys. Commun. 148, 327 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    A. Arnold, C. Holm, Chem. Phys. Lett. 354, 324 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    A. Arnold, J. de Joannis, C. Holm, J. Chem. Phys. 117, 2496 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    A. Arnold, J. de Joannis, C. Holm, J. Chem. Phys. 117, 2503 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    A. Arnold, C. Holm, in Advanced computer simulation approaches for soft matter sciences II, Advances in polymer sciences, edited by C. Holm, K. Kremer (Springer, Berlin, 2005), p. 59–109Google Scholar
  56. 56.
    A. Arnold, C. Holm, J. Chem. Phys. 123, 144103 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    A. Arnold, B.A. Mann, C. Holm, in Computer simulations in Condensed Matter: from Materials to Chemical Biology, Lecture Notes in Physics, edited by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Germany, 2006), p. 193–222Google Scholar
  58. 58.
    S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 127, 154723 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 129, 204102 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    C. Tyagi, M. Süzen, M. Sega, M. Barbosa, S.S. Kantorovich, C. Holm, J. Chem. Phys. 132, 154112 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, C. Holm, Entropy 15, 4569 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    L.P. Fischer, T. Peter, C. Holm, J. de Graaf, J. Chem. Phys. 143, 084107 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    J. de Graaf, T. Peter, L.P. Fischer, C. Holm, J. Chem. Phys. 143, 084108 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    J. de Graaf, H. Menke, A.J. Mathijssen, M. Fabritius, C. Holm, T.N. Shendruk, J. Chem. Phys. 144, 134106 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    J. de Graaf, A.J. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft Matter 12, 4704 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    G. Inci, A. Arnold, A. Kronenburg, R. Weeber, Aerosol Sci. Technol. 48, 842 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    G. Inci, A. Kronenburg, R. Weeber, D. Pflüger, Flow, Turbul. Combust. 98, 1065 (2017)CrossRefGoogle Scholar
  69. 69.
    C. Schober, D. Keerl, M.J. Lehmann, M. Mehl, in Proceedings of the VII international conference on coupled problems in science and engineering, edited by M. Papadrakakis, E. Oñate, B. Schrefler (International Center for Numerical Methods in Engineering, 2016)Google Scholar
  70. 70.
    D. Röhm, A. Arnold, Eur. Phys. J. Special Topics 210, 89 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    I. Cimrák, M. Gusenbauer, T. Schrefl, Comput. Math. Appl. 64, 278 (2012)MathSciNetCrossRefGoogle Scholar
  72. 72.
    I. Cimrak, M. Gusenbauer, I. Jančigová, Comput. Phys. Commun. 185, 900 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    I. Cimrák, I. Jancigová, K. Bachratá, H. Bachrat`y, in III International conference on particle-based methods–fundamentals and applications particles (2013), Vol. 2013 p. 133–144Google Scholar
  74. 74.
    G. Rempfer, G.B. Davies, C. Holm, J. de Graaf, J. Chem. Phys. 145, 044901 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    A. Guckenberger, M.P. Schraml, P.G. Chen, M. Leonetti, S. Gekle, Comput. Phys. Commun. 207, 1 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    C. Bächer, L. Schrack, S. Gekle, Phys. Rev. Fluids 2, 013102 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    K. Kratzer, A. Arnold, R.J. Allen, J. Chem. Phys. 138, 164112 (2013)ADSCrossRefGoogle Scholar
  78. 78.
    K. Kratzer, J.T. Berryman, A. Taudt, J. Zeman, A. Arnold, Comput. Phys. Commun. 185, 1875 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    S. Samin, Y. Tsori, C. Holm, Phys. Rev. E 87, 052128 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Neural information processing systems (2017)Google Scholar
  81. 81.
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)MathSciNetGoogle Scholar
  82. 82.
    F. Chollet, Deep learning with Python (Manning Publications Co., Greenwich, 2017)Google Scholar
  83. 83.
    A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, V. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, PeerJ Comput. Sci. 3, e103 (2017)CrossRefGoogle Scholar
  84. 84.
    W. Stein, D. Joyner, ACM SIGSAM Bull. 39, 61 (2005)CrossRefGoogle Scholar
  85. 85.
    J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)CrossRefGoogle Scholar
  86. 86.
    P. Ramachandran, G. Varoquaux, Comput. Sci. Eng. 13, 40 (2011)CrossRefGoogle Scholar
  87. 87.
    E. JonesT. OliphantP. Peterson et al. SciPy: open source scientific tools for Python, 2001–2019Google Scholar
  88. 88.
    W. McKinney, in Proceedings of the 9th Python in science conference, edited by S. van der Walt, J. Millman (2010), pp. 51–56Google Scholar
  89. 89.
    D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)CrossRefGoogle Scholar
  90. 90.
    T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, in Positioning and power in academic publishing: players, agents and agendas, edited by F. Loiyides, B. Schmidt (IOS Press, London, 2016), pp. 87–90Google Scholar
  91. 91.
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles (IOP, London, 1988)Google Scholar
  92. 92.
    A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, G. Sutmann, Phys. Rev. E 88, 063308 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    F. Nestler, Appl. Numer. Math. 105, 25 (2016)MathSciNetCrossRefGoogle Scholar
  94. 94.
    R. Weeber, F. Nestler, F. Weik, M. Pippig, D. Potts, C. Holm, arXiv:1808.10341 (2018)
  95. 95.
    Y.L. Raikher, O.V. Stolbov, JMMM 258/259, 477 (2003)ADSCrossRefGoogle Scholar
  96. 96.
    K. Morozov, M. Shliomis, H. Yamaguchi, Phys. Rev. E 79, 040801 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    U. Ayachit, The ParaView guide: a parallel visualization application (Kitware, Inc., USA, 2015)Google Scholar
  98. 98.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  99. 99.
    M. Fletcher, R. Liebscher, PyOpenGL–the Python OpenGL binding, 2005Google Scholar
  100. 100.
    D. Shreiner, OpenGL reference manual: the official reference document to OpenGL, version 1.2, 3rd edn. (Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999)Google Scholar
  101. 101.
    D. Röhm, Lattice Boltzmann simulations on GPUs, diplomarbeit (University of Stuttgart, Germany, 2011)Google Scholar
  102. 102.
    P. de Buyl, P.H. Colberg, F. Höfling, Comput. Phys. Commun. 185, 1546 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    The HDF Group, Hierarchical data format, version 5, http://www.hdfgroup.org/HDF5/
  104. 104.
    A. Collette, Python and HDF5 (O’Reilly, 2013)Google Scholar
  105. 105.
    Boost C++ libraries, https://www.boost.org (1998–2019)
  106. 106.
    B. Dünweg, A.J.C. Ladd, inAdvanced computer simulation approaches for soft matter sciences III, Advances in Polymer Science (Springer-Verlag Berlin, Berlin, Germany, 2009), Vol. 221, pp. 89–166Google Scholar
  107. 107.
    Clang: a C language family frontend for LLVM, https://clang.llvm.org/
  108. 108.
    M. Smiljanic, R. Weeber, C. Holm, A. Kronenburg, Eur. Phys. J. Special Topics. SubmittedGoogle Scholar
  109. 109.
    K. Breitsprecher, C. Holm, S. Kondrat, ACS Nano 12, 9733 (2018)CrossRefGoogle Scholar
  110. 110.
    V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)ADSCrossRefGoogle Scholar
  111. 111.
    M. Radu, T. Schilling, Europhys. Lett. 105, 26001 (2014)ADSCrossRefGoogle Scholar
  112. 112.
    K. Kratzer, A. Arnold, Soft Matter 11, 2174 (2015) ADSCrossRefGoogle Scholar
  113. 113.
    K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Nat. Mater. 2, 88 (2003)ADSCrossRefGoogle Scholar
  114. 114.
    J.J. Cerdà, S. Kantorovich, C. Holm, J. Phys.: Condens. Matter 20, 204125 (2008)ADSGoogle Scholar
  115. 115.
    R. Weeber, M. Klinkigt, S. Kantorovich, C. Holm, J. Chem. Phys. 139, 214901 (2013)ADSCrossRefGoogle Scholar
  116. 116.
    J.G. Donaldson, S.S. Kantorovich, Nanoscale 7, 3217 (2015)ADSCrossRefGoogle Scholar
  117. 117.
    A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Combust. Flame 161, 1849 (2014) CrossRefGoogle Scholar
  118. 118.
    W. Lechner, C. Dellago, J. Chem. Phys. 129, 114707 (2008)ADSCrossRefGoogle Scholar
  119. 119.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  120. 120.
    J.J. Cerdà, V. Ballenegger, O. Lenz, C. Holm, J. Chem. Phys. 129, 234104 (2008)ADSCrossRefGoogle Scholar
  121. 121.
    A. Bródka, Chem. Phys. Lett. 400, 62 (2004)ADSCrossRefGoogle Scholar
  122. 122.
    W. Richtering, Smart Coll. Mater. 133, 9 (2006)CrossRefGoogle Scholar
  123. 123.
    J.M. Berg, Biochemistry, 8th edn. (Freeman, New York, NY, USA, 2015)Google Scholar
  124. 124.
    M. Castelnovo, P. Sens, J.-F. Joanny, Eur. Phys. J. E 1, 115 (2000)CrossRefGoogle Scholar
  125. 125.
    C. Shi, J.A. Wallace, J.K. Shen, Biophys. J. 102, 1590 (2012)ADSCrossRefGoogle Scholar
  126. 126.
    M. Lund, B. Jönsson, Biochemistry 44, 5722 (2005)CrossRefGoogle Scholar
  127. 127.
    M. Lund, B. Jönsson, Quart. Rev. Biophys. 46, 265 (2013)CrossRefGoogle Scholar
  128. 128.
    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)ADSCrossRefGoogle Scholar
  129. 129.
    C.E. Reed, W.F. Reed, J. Chem. Phys. 96, 1609 (1992)ADSCrossRefGoogle Scholar
  130. 130.
    E.R. Smith, J. Stat. Phys. 77, 449 (1994)ADSCrossRefGoogle Scholar
  131. 131.
    J.K. Johnson, A.Z. Panagiotopoulos, K.E. Gubbins, Mol. Phys. 81, 717 (1994)ADSCrossRefGoogle Scholar
  132. 132.
    J. Landsgesell, C. Holm, J. Smiatek, Eur. Phys. J. Special Topics 226, 725 (2017)ADSCrossRefGoogle Scholar
  133. 133.
    P. W. Atkins, J. de Paula, Physical chemistry (Oxford Univ. Press, Oxford, UK, 2010)Google Scholar
  134. 134.
    C. Heath Turner, J.K. Brennan, M. Lisal, W.R. Smith, J. Karl Johnson, K.E. Gubbins, Mol. Simul. 34, 119 (2008)CrossRefGoogle Scholar
  135. 135.
    J. Landsgesell, C. Holm, J. Smiatek, J. Chem. Theory Comput. 13, 852 (2017)CrossRefGoogle Scholar
  136. 136.
    F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)ADSCrossRefGoogle Scholar
  137. 137.
    D. Frenkel, B. Smit, Understanding molecular simulation, 1st edn. (Academic Press, San Diego, 1996)Google Scholar
  138. 138.
    I. Leontyev, A. Stuchebrukhov, Phys. Chem. Chem. Phys. 13, 2613 (2011)CrossRefGoogle Scholar
  139. 139.
    J. Schmidt, C. Krekeler, F. Dommert, Y. Zhao, R. Berger, L. Delle Site, C. Holm, J. Phys. Chem. B 114, 6150 (2010)CrossRefGoogle Scholar
  140. 140.
    F. Dommert, K. Wendler, R. Berger, L.D. Site, C. Holm, Chem. Phys. Chem. 13, 1625 (2012)CrossRefGoogle Scholar
  141. 141.
    F. Dommert, C. Holm, Phys. Chem. Chem. Phys. 15, 2037 (2013)CrossRefGoogle Scholar
  142. 142.
    M. Kohagen, P.E. Mason, P. Jungwirth, J. Phys. Chem. B 120, 1454 (2016)CrossRefGoogle Scholar
  143. 143.
    G. Lamoureux, E. Harder, I. Vorobyov, B. Roux, A. MacKerell, Chem. Phys. Lett. 418, 245 (2006)ADSCrossRefGoogle Scholar
  144. 144.
    G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025 (2003)ADSCrossRefGoogle Scholar
  145. 145.
    J.R. Bordin, R. Podgornik, C. Holm, Eur. Phys. J. Special Topics 225, 1693 (2016)ADSCrossRefGoogle Scholar
  146. 146.
    H. Yu, T. Hansson, W.F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)ADSCrossRefGoogle Scholar
  147. 147.
    P. Mitchell, D. Fincham, J. Phys.: Condens. Matter 5, 1031 (1993)ADSGoogle Scholar
  148. 148.
    B.T. Thole, Chem. Phys. 59, 341 (1981)CrossRefGoogle Scholar
  149. 149.
    D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000)ADSCrossRefGoogle Scholar
  150. 150.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. 105, 1232 (2008)ADSCrossRefGoogle Scholar
  151. 151.
    Y. Katz, K. Tunstrøm, C. Ioannou, C. Huepe, I. Couzin, Proc. Natl. Acad. Sci. 108, 18720 (2011)ADSCrossRefGoogle Scholar
  152. 152.
    J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, in Traffic and granular flow ‘11, edited by V.V. Kozlov, A.P. Buslaev, A.S. Bugaev, M.V. Yashina, A. Schadschneider, M. Schreckenberg (Springer, Berlin, Heidelberg, 2013), p. 241Google Scholar
  153. 153.
    J. Silverberg, M. Bierbaum, J. Sethna, I. Cohen, Phys. Rev. Lett. 110, 228701 (2013)ADSCrossRefGoogle Scholar
  154. 154.
    D. Woolley, Reproduction 126, 259 (2003)CrossRefGoogle Scholar
  155. 155.
    I. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005)ADSCrossRefGoogle Scholar
  156. 156.
    A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)ADSCrossRefGoogle Scholar
  157. 157.
    M. Polin, I. Tuval, K. Drescher, J. Gollub, R. Goldstein, Science 325, 487 (2009)ADSCrossRefGoogle Scholar
  158. 158.
    V. Geyer, F. Jülicher, J. Howard, B. Friedrich, Proc. Natl. Acad. Sci. 110, 18058 (2013)ADSCrossRefGoogle Scholar
  159. 159.
    R. Ma, G. Klindt, I. Riedel-Kruse, F. Jülicher, B. Friedrich, Phys. Rev. Lett. 113, 048101 (2014)ADSCrossRefGoogle Scholar
  160. 160.
    M. Reufer, R. Besseling, J. Schwarz-Linek, V. Martinez, A. Morozov, J. Arlt, D. Trubitsyn, F. Ward, W. Poon, Biophys. J. 106, 37 (2014)ADSCrossRefGoogle Scholar
  161. 161.
    J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V.A. Martinez, W.C. Poon, Coll. Surf. B: Biointerfaces 137, 2 (2016)CrossRefGoogle Scholar
  162. 162.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. Angelo St., Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  163. 163.
    J.R. Howse, R.A. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  164. 164.
    C. Maggi, J. Simmchen, F. Saglimbeni, J. Katuri, M. Dipalo, F. De Angelis, S. Sanchez, R. Di Leonardo, Small 12, 446 (2016)CrossRefGoogle Scholar
  165. 165.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)ADSCrossRefGoogle Scholar
  166. 166.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  167. 167.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  168. 168.
    W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17 (1999)CrossRefGoogle Scholar
  169. 169.
    J. Stenhammar, A. Tiribocchi, R. Allen, D. Marenduzzo, M. Cates, Phys. Rev. Lett. 111, 145702 (2013)ADSCrossRefGoogle Scholar
  170. 170.
    X. Zheng, B. Ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013)ADSCrossRefGoogle Scholar
  171. 171.
    K. Drescher, R. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)ADSCrossRefGoogle Scholar
  172. 172.
    K. Drescher, J. Dunkel, L. Cisneros, S. Ganguly, R. Goldstein, Proc. Natl. Acad. Sci. 108, 10940 (2011)ADSCrossRefGoogle Scholar
  173. 173.
    A.I. Campbell, S.J. Ebbens, P. Illien, R. Golestanian, arXiv:1802.04600 (2018),
  174. 174.
    R. Nash, R. Adhikari, M. Cates, Phys. Rev. E 77, 026709 (2008)ADSCrossRefGoogle Scholar
  175. 175.
    R.W. Nash, Efficient lattice Boltzmann simulations of self-propelled particles with singular forces, Ph.D. thesis, The University of Edinburgh, 2010Google Scholar
  176. 176.
    N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)ADSCrossRefGoogle Scholar
  177. 177.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)ADSCrossRefGoogle Scholar
  178. 178.
    H. Wensink, V. Kantsler, R. Goldstein, J. Dunkel, Phys. Rev. E 89, 010302 (2014)ADSCrossRefGoogle Scholar
  179. 179.
    P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)ADSCrossRefGoogle Scholar
  180. 180.
    E. Harris, The chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use (Elsevier Science, Amsterdam, 2013)Google Scholar
  181. 181.
    V. Kantsler, J. Dunkel, M. Polin, R.E. Goldstein, Proc. Natl. Acad. Sci. 110, 1187 (2013)ADSCrossRefGoogle Scholar
  182. 182.
    D. Röhm, S. Kesselheim, A. Arnold, Soft Matt. 10, 5503 (2014)ADSCrossRefGoogle Scholar
  183. 183.
    J. de Graaf, J. Stenhammar, Phys. Rev. E 95, 023302 (2017)ADSCrossRefGoogle Scholar
  184. 184.
    J. de Graaf, J. Stenhammar, Pers. Commun (2017)Google Scholar
  185. 185.
    A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005)ADSCrossRefGoogle Scholar
  186. 186.
    S.E. Ilse, C. Holm, J. de Graaf, J. Chem. Phys. 145, 134904 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Florian Weik
    • 1
    Email author
  • Rudolf Weeber
    • 1
  • Kai Szuttor
    • 1
  • Konrad Breitsprecher
    • 1
  • Joost de Graaf
    • 2
  • Michael Kuron
    • 1
  • Jonas Landsgesell
    • 1
  • Henri Menke
    • 1
    • 3
  • David Sean
    • 1
  • Christian Holm
    • 1
    Email author
  1. 1.Institut für Computerphysik, Universität StuttgartStuttgartGermany
  2. 2.Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht UniversityUtrechtThe Netherlands
  3. 3.Department of PhysicsUniversity of OtagoDunedinNew Zealand

Personalised recommendations