Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1615–1629 | Cite as

Performance of state-of-the-art force fields for atomistic simulations of silicon at high electronic temperatures

  • Bernd BauerhenneEmail author
  • Martin E. Garcia
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Intensive femtosecond laser pulses or ion bombardment drives Silicon (Si) into a nonequilibrium state with hot electrons and cold ions. Since ab initio molecular dynamics (MD) simulations can only deal with at most 103 atoms, an analytical interatomic potential (or force field) is necessary for performing large-scale simulations describing Si in nonequilibrium. We recently constructed a potential for Si at high electronic temperatures Te’s, which was developed from ab initio MD simulations. In this study, we analyze the performance of this potential compared to other available Te-dependent Si potentials and to some widely used ground state Si potentials, which were adapted to nonequilibrium by fitting their parameters to ab initio MD simulations. We analyze the ability for reproducing nonthermal effects like thermal phonon squeezing and ultrafast melting in bulk Si as well as the expansion due to bond softening of a thin Si film. Our results show that the available Te-dependent potentials cannot quantitatively describe the latter. A much better description is given by the potentials with parameters fitted to ab initio MD simulations. Our proposed potential gives the best description among the studied ones, since its analytical shape was optimized for the ground and the laser excited state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11734_2019_80181_MOESM1_ESM.pdf (159 kb)
Performance of state-of-the-art force fields for atomistic simulations of silicon at high electronic temperatures

References

  1. 1.
    B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia, arXiv:1812.08595 (2018)
  2. 2.
    F. Courvoisier, P.-A. Lacourt, M. Jacquot, M.K. Bhuyan, L. Furfaro, J.M. Dudley, Opt. Lett. 34, 3163 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    R. Darkins, P.-W. Ma, S.T. Murphy, D.M. Duffy, Phys. Rev. B 98, 024304 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    B.W. Dodson, Phys. Rev. B 35, 2795 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    M. Harb, R. Ernstorfer, T. Dartigalongue, C.T. Hebeisen, R.E. Jordan, R.J.D. Miller, J. Phys. Chem. B 110, 25308 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, J. Bonse, Opt. Express 23, 61 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Phys. A 110, 553 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D.S. Ivanov, V.P. Lipp, A. Blumenstein, F. Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 4, 064006 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    S. Khakshouri, D. Alfè, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    I. Klett, T. Zier, B. Rethfeld, M.E. Garcia, E.S. Zijlstra, Phys. Rev. B 91, 144303 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comput. Mater. Sci. 39, 457 (2007)CrossRefGoogle Scholar
  14. 14.
    X. Liu, D. Du, G. Mourou, IEEE J. Quant. Electron. 33, 1706 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    N.D. Mermin, Phys. Rev. 137, A1441 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Moriarty, R.Q. Hood, L.H. Yang, Phys. Rev. Lett. 108, 036401 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    S.T. Murphy, S.L. Daraszewicz, Y. Giret, M. Watkins, A.L. Shluger, K. Tanimura, D.M. Duffy, Phys. Rev. B 92, 134110 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    G.E. Norman, S.V. Starikov, V.V. Stegailov, J. Exp. Theor. Phys. 114, 792 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D.F. Shanno, Math. Comp. 24, 647 (1970)MathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97, 151907 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    L. Shokeen, P.K. Schelling, J. Appl. Phys. 109, 073503 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    L. Shokeen, P.K. Schelling, Comput. Mater. Sci. 67, 316 (2013)CrossRefGoogle Scholar
  23. 23.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    J.A.V. Vechten, R. Tsu, F.W. Saris, Phys. Lett. A 74, 422 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    X.C. Wang, H.Y. Zheng, C.W. Tan, F. Wang, H.Y. Yu, K.L. Pey, Opt. Express 18, 19379 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T. Zier, A. Kalitsov, E.S. Zijlstra, I. Theodonis, M.E. Garcia, Struct. Dyn. 2, 054101 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Zier, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 117, 1 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    T. Zier, E.S. Zijlstra, M.E. Garcia, Phys. Rev. Lett. 116, 153901 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    T. Zier, E.S. Zijlstra, S. Krylow, M.E. Garcia, Appl. Phys. A 123, 625 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25, 5605 (2013)CrossRefGoogle Scholar
  34. 34.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)Google Scholar
  35. 35.
    E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114, 1 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of KasselKasselGermany

Personalised recommendations