Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1529–1545 | Cite as

On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data

  • Jörg Baz
  • Niels Hansen
  • Joachim GrossEmail author
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Parameterization of classical force fields often suffers from highly correlated parameters. In the present work the hypothesis that transport properties such as shear viscosity or self-diffusion coefficient can be used to decouple force field parameters that were fitted to static thermodynamic properties, such as saturation vapor pressure and liquid density is investigated. Here 1-propanol was studied where united-atom sites are described through Mie potentials and point charges. Four models were selected that gave about the same level of agreement with experimental liquid densities and vapor pressures. Shear viscosity and self-diffusion coefficients were evaluated with the aim to discriminate the models. However, the degeneracy of force field parameters observed in the static properties was also observed in the dynamic properties. We conclude that meaningful parameterizations for transferable force fields should simultaneously consider several molecules from a homologous series in order to define a less degenerate optimization problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11734_2019_80178_MOESM1_ESM.pdf (305 kb)
On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data

References

  1. 1.
    M.B.H. Ketko, J.J. Potoff, Mol. Simul. 33, 769 (2007)Google Scholar
  2. 2.
    A. Hemmen, A.Z. Panagiotopoulos, J. Gross, J. Phys. Chem. B 119, 7087 (2015)Google Scholar
  3. 3.
    W.L. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984)Google Scholar
  4. 4.
    W.L. Jorgensen, C.J. Swenson, J. Am. Chem. Soc. 107, 569 (1985)Google Scholar
  5. 5.
    W.L. Jorgensen, C.J. Swenson, J. Am. Chem. Soc. 107, 1489 (1985)Google Scholar
  6. 6.
    W.L. Jorgensen, J. Phys. Chem. 90, 1276 (1986)Google Scholar
  7. 7.
    W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988)Google Scholar
  8. 8.
    J.M. Briggs, T. Matsui, W.L. Jorgensen, J. Comput. Chem. 11, 958 (1990)Google Scholar
  9. 9.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)Google Scholar
  10. 10.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 103, 4508 (1999)Google Scholar
  11. 11.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 103, 5370 (1999)Google Scholar
  12. 12.
    C.D. Wick, M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 104, 8008 (2000)Google Scholar
  13. 13.
    B. Chen, J.J. Potoff, J.I. Siepmann, J. Phys. Chem. B 105, 3093 (2001)Google Scholar
  14. 14.
    J.M. Stubbs, J.J. Potoff, J.I. Siepmann, J. Phys. Chem. B 108, 17596 (2004)Google Scholar
  15. 15.
    C.D. Wick, J.M. Stubbs, N. Rai, J.I. Siepmann, J. Phys. Chem. B 109, 18974 (2005)Google Scholar
  16. 16.
    J.R. Errington, A.Z. Panagiotopoulos, J. Chem. Phys. 111, 9731 (1999)ADSGoogle Scholar
  17. 17.
    S. Toxvaerd, J. Chem. Phys. 93, 4290 (1990)ADSGoogle Scholar
  18. 18.
    S. Toxvaerd, J. Chem. Phys. 107, 5197 (1997)ADSGoogle Scholar
  19. 19.
    C. Nieto-Draghi, P. Bonnaud, P. Ungerer, J. Phys. Chem. C 111, 15686 (2007)Google Scholar
  20. 20.
    N. Ferrando, V. Lachet, J. Teuler, A. Boutin, J. Phys. Chem. B 113, 5985 (2009)Google Scholar
  21. 21.
    N. Ferrando, V. Lachet, A. Boutin, J. Phys. Chem. B 114, 8680 (2010)Google Scholar
  22. 22.
    N. Ferrando, V. Lachet, A. Boutin, J. Phys. Chem. B 116, 3239 (2012)Google Scholar
  23. 23.
    J. Pérez-Pellitero, E. Bourasseau, I. Demachy, J. Ridard, P. Ungerer, A.D. Mackie, J. Phys. Chem. B 112, 9853 (2008)Google Scholar
  24. 24.
    J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)Google Scholar
  25. 25.
    J.J. Potoff, G. Kamath, J. Chem. Eng. Data 59, 3144 (2014)Google Scholar
  26. 26.
    J.R. Mick, M.S. Barhaghi, B. Jackman, K. Rushaidat, L. Schwiebert, J.J. Potoff, J. Chem. Phys. 143, 114504 (2015)ADSGoogle Scholar
  27. 27.
    M.S. Barhaghi, J.R. Mick, J.J. Potoff, Mol. Phys. 115, 1378 (2017)ADSGoogle Scholar
  28. 28.
    A. Hemmen, J. Gross, J. Phys. Chem. B 119, 11695 (2015)Google Scholar
  29. 29.
    D. Weidler, J. Gross, Ind. Eng. Chem. Res. 55, 12123 (2016)Google Scholar
  30. 30.
    D. Weidler, J. Gross, Fluid Phase Equilib. 470, 101 (2018)Google Scholar
  31. 31.
    C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)ADSGoogle Scholar
  32. 32.
    F. Haase, R. Ahlrichs, J. Comput. Chem. 14, 907 (1993)Google Scholar
  33. 33.
    A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994)ADSGoogle Scholar
  34. 34.
    TURBOMOLE V6.6 2014 a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007 (2018), available from http://www.turbomole.com
  35. 35.
    H.A. Lorentz, Ann. Phys. 248, 127 (1881)Google Scholar
  36. 36.
    D. Berthelot, Compt. Rendus 126, 1703 (1898)Google Scholar
  37. 37.
    J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)Google Scholar
  38. 38.
    J. Gross, G. Sadowski, Fluid Phase Equilib. 168, 183 (2000)Google Scholar
  39. 39.
    J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)Google Scholar
  40. 40.
    T. van Westen, T.J.H. Vlugt, J. Gross, J. Phys. Chem. B 115, 7872 (2011)Google Scholar
  41. 41.
    A.Z. Panagiotopoulos, V. Wong, M.A. Floriano, Macromolec. 31, 912 (1998)ADSGoogle Scholar
  42. 42.
    A.Z. Panagiotopoulos, J. Phys.: Condens. Matter 12, R25 (2000)ADSGoogle Scholar
  43. 43.
    J.R. Errington, J. Chem. Phys. 118, 9915 (2003)ADSGoogle Scholar
  44. 44.
    M. Fitzgerald, R.R. Picard, R.N. Silver, Europhys. Lett. 46, 282 (1999)ADSGoogle Scholar
  45. 45.
    J. Wang, T.K. Tay, R.H. Swendsen, Phys. Rev. Lett. 82, 476(1999)ADSGoogle Scholar
  46. 46.
    J.K. Singh, J.R. Errington, J. Phys. Chem. B 110, 1369 (2006)Google Scholar
  47. 47.
    A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)ADSGoogle Scholar
  48. 48.
    D. Frenkel, G. Mooij, B. Smit, J. Phys.: Condens. Matter 4, 3053 (1992)ADSGoogle Scholar
  49. 49.
    J.I. Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992)ADSGoogle Scholar
  50. 50.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)ADSGoogle Scholar
  51. 51.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)Google Scholar
  52. 52.
    M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1, 19 (2015)ADSGoogle Scholar
  53. 53.
    M.J. Abraham, User Specified non-bonded potentials in Gromacs 2014Google Scholar
  54. 54.
    R.W. Hockney, Methods Comput. Phys. 9, 136 (1970)Google Scholar
  55. 55.
    I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16, 1911 (2006)Google Scholar
  56. 56.
    T.M. Nymand, P. Linse, J. Chem. Phys. 112, 6152 (2000)ADSGoogle Scholar
  57. 57.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)ADSGoogle Scholar
  58. 58.
    B. Hess, J. Chem. Theory Comput. 4, 116 (2008)Google Scholar
  59. 59.
    B. Hess, H. Bekker, H.J.C. Berendsen, J. Comput. Chem. 18, 1463 (1997)Google Scholar
  60. 60.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)ADSGoogle Scholar
  61. 61.
    H.J.C. Berendsen, W.F. van Gunsteren, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSGoogle Scholar
  62. 62.
    W.M. Haynes, CRC handbook of chemistry and physics (CRC Press, 2012)Google Scholar
  63. 63.
    P.E. Smith, W.F. van Gunsteren, Chem. Phys. Lett. 215, 315 (1993)ADSGoogle Scholar
  64. 64.
    B. Hess, J. Chem. Phys. 116, 209 (2002)ADSGoogle Scholar
  65. 65.
    B.L. Holian, D.J. Evans, J. Chem. Phys. 78, 5147 (1983)ADSGoogle Scholar
  66. 66.
    N. Wiener, Acta Math. 55, 117 (1930)MathSciNetGoogle Scholar
  67. 67.
    A. Khintchine, Math. Ann. 109, 604 (1934)MathSciNetGoogle Scholar
  68. 68.
    Y. Zhang, A. Otani, E.J. Maginn, J. Chem. Theory Comput. 11, 3537 (2015)Google Scholar
  69. 69.
    A. Einstein, Ann. Phys. 322, 549 (1905)Google Scholar
  70. 70.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford Univ. Press, Oxford, 1987)Google Scholar
  71. 71.
    I. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)Google Scholar
  72. 72.
    M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 124105 (2008)ADSGoogle Scholar
  73. 73.
    P. Winget, G.D. Hawkins, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 104, 4726 (2000)Google Scholar
  74. 74.
    G.H. Thomson, Int. J. Thermophys. 17, 223 (1996)ADSGoogle Scholar
  75. 75.
    J.H. Mathews, J. Am. Chem. Soc. 48, 562 (1926)Google Scholar
  76. 76.
    J. Polák, S. Murakami, V.T. Lam, H.D. Pflug, G.C. Benson, Can. J. Chem. 48, 2457 (1970)Google Scholar
  77. 77.
    I. Brown, W. Fock, F. Smith, J. Chem. Thermodyn. 1, 273 (1969)Google Scholar
  78. 78.
    R. Riggio, H.E. Martinez, N.Z. de Salas, J.F. Ramos, Can. J. Chem. 73, 431 (1995)Google Scholar
  79. 79.
    R. Riggio, H.E. Martinez, N.Z.D. Salas, M.D.D. Toigo, J.F. Ramos, Can. J. Chem. 73, 1274 (1995)Google Scholar
  80. 80.
    R.R. Riggio, M.H. Ubeda, J.A. Espindola, Can. J. Chem. 59, 3305 (1981)Google Scholar
  81. 81.
    M.J. Armourdam, G.S. Laddha, J. Chem. Eng. Data 12, 389 (1967)Google Scholar
  82. 82.
    R. Riggio, H.E. Martinez, J.A. Espindola, J.F. Ramos, J. Chem. Eng. Data 29, 11 (1984)Google Scholar
  83. 83.
    C. Lafuente, J. Pardo, V. Rodriguez, F.M. Royo, J.S. Urieta, J. Chem. Eng. Data 38, 554 (1993)Google Scholar
  84. 84.
    B. Sreenivasulu, P.R. Naidu, J. Chem. Eng. Data 38, 619 (1993)Google Scholar
  85. 85.
    B.V. Mallu, Y.C.V. Rao, J. Chem. Eng. Data 35, 444 (1990)Google Scholar
  86. 86.
    J. Karunakar, K.D. Reddy, M.P.V. Rao, J. Chem. Eng. Data 27, 348 (1982)Google Scholar
  87. 87.
    J.C. Mouli, P.R. Naidu, N.V. Choudary, J. Chem. Eng. Data 31, 493 (1986)Google Scholar
  88. 88.
    A. Sacco, A.K. Rakshit, J. Chem. Thermodyn. 7, 257 (1975)Google Scholar
  89. 89.
    T.M. Aminabhavi, M.I. Aralaguppi, S.B. Harogoppad, R.H. Balundgi, J. Chem. Eng. Data 38, 31 (1993)Google Scholar
  90. 90.
    G. Narayanaswamy, G. Dharmaraju, G.K. Raman, J. Chem. Thermodyn. 13, 327 (1981)Google Scholar
  91. 91.
    G.W. Smith, L.V. Sorg, J. Phys. Chem. 45, 671 (1941)Google Scholar
  92. 92.
    T. Okano, H. Ogawa, S. Murakami, Can. J. Chem. 66, 713 (1988)Google Scholar
  93. 93.
    M.E. Friedman, H.A. Scheraga, J. Phys. Chem. 69, 3795 (1965)Google Scholar
  94. 94.
    A. Radecki, B. Kaczmarek, J. Chem. Eng. Data 25, 230 (1980)Google Scholar
  95. 95.
    C. Berro, M. Rogalski, A. Peneloux, J. Chem. Eng. Data 27, 352 (1982)Google Scholar
  96. 96.
    C. Berro, A. Peneloux, J. Chem. Eng. Data 29, 206 (1984)Google Scholar
  97. 97.
    K.V.R. Reddy, K. Rambabu, T. Devarajulu, A. Krishnaiah, Phys. Chem. Liq. 28, 161 (1994)Google Scholar
  98. 98.
    F.M. Jaeger, Z. Anorg. Allg. Chem. 101, 1 (1917)Google Scholar
  99. 99.
    K.P. Rao, K.S. Reddy, Thermochim. Acta 91, 321 (1985)Google Scholar
  100. 100.
    R. Riggio, J.F. Ramos, H.E. Martinez, J.A. Espindola, H.N. Solimo, J. Chem. Eng. Data 28, 352 (1983)Google Scholar
  101. 101.
    K. Nakanishi, Bull. Chem. Soc. Jpn. 33, 793 (1960)Google Scholar
  102. 102.
    H. Kubota, Y. Tanaka, T. Makita, Int. J. Thermophys. 8, 47 (1987)ADSGoogle Scholar
  103. 103.
    A.K. Nain, R. Sharma, A.G. Ali, J. Mol. Liq. 144, 138 (2009)Google Scholar
  104. 104.
    R.D. Peralta, R. Infante, G. Cortez, A. Cisneros, J. Wisniak, Chem. Eng. Commun. 192, 1684 (2005)Google Scholar
  105. 105.
    A.K. Nain, J. Solution Chem. 42, 1404 (2013)Google Scholar
  106. 106.
    P.S. Tofts, D. Lloyd, C.A. Clark, G.J. Barker, G.J.M. Parker, P. McConville, C. Baldock, J.M. Pope, Magn. Reson. Med. 43, 368 (2000)Google Scholar
  107. 107.
    M.J. Assael, S.K. Polimatidou, Int. J. Thermophys. 15, 95 (1994)ADSGoogle Scholar
  108. 108.
    D. Papaioannou, C. Panayiotou, J. Chem. Eng. Data 39, 463 (1994)Google Scholar
  109. 109.
    D. Papaioannou, C. Panayiotou, J. Chem. Eng. Data 40, 202 (1995)Google Scholar
  110. 110.
    T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 40, 462 (1995)Google Scholar
  111. 111.
    D. Papaioannou, M. Bridakis, C.G. Panayiotou, J. Chem. Eng. Data 38, 370 (1993)Google Scholar
  112. 112.
    Y. Tanaka, Y. Matsuda, H. Fujiwara, H. Kubota, T. Makita, Int. J. Thermophys. 8, 147 (1987)ADSGoogle Scholar
  113. 113.
    E. Romano, J.L. Trenzado, E. González, J.S. Matos, L. Segade, E. Jiménez, Fluid Phase Equilib. 211, 219 (2003)Google Scholar
  114. 114.
    D. Agarwal, M. Singh, J. Chem. Eng. Data 49, 1218 (2004)Google Scholar
  115. 115.
    B. González, N. Calvar, A. Domnguez, J. Tojo, J. Chem. Thermodyn. 39, 322 (2007)Google Scholar
  116. 116.
    M.M.H. Bhuiyan, J. Ferdaush, M.H. Uddin, J. Chem. Thermodyn. 39, 675 (2007)Google Scholar
  117. 117.
    N. Calvar, E. Gómez, B. Gonzalez, A. Dominguez, J. Chem. Eng. Data 54, 2229 (2009)Google Scholar
  118. 118.
    R.L. Gardas, S. Oswal, Thermochim. Acta 479, 17 (2008)Google Scholar
  119. 119.
    H.F. Costa, H. Lourenco, I. Johnson, A.G.M. Ferreira, I.M.A. Fonseca, J. Chem. Eng. Data 54, 2845 (2009)Google Scholar
  120. 120.
    A. Baylaucq, G. Watson, C. Zéberg-Mikkelsen, J. Bazile, C. Boned, J. Chem. Eng. Data 54, 2715 (2009)Google Scholar
  121. 121.
    W. Weber, Rheol. Acta 14, 1012 (1975)Google Scholar
  122. 122.
    P.S. Nikam, B.S. Jagdale, A.B. Sawant, M. Hasan, J. Chem. Eng. Data 45, 214 (2000)Google Scholar
  123. 123.
    E.J. González, L. Alonso, A. Domnguez, J. Chem. Eng. Data 51, 1446 (2006)Google Scholar
  124. 124.
    H. Djojoputro, S. Ismadji, J. Chem. Eng. Data 50, 1343 (2005)Google Scholar
  125. 125.
    R. Belda Maximino, Phys. Chem. Liq. 47, 515 (2009)Google Scholar
  126. 126.
    R. Sadeghi, S. Azizpour, J. Chem. Eng. Data 56, 240 (2011)Google Scholar
  127. 127.
    L. Segade, H. Casas, O. Cabeza, M. Prego, S. Garca-Garabal, C. Franjo, E. Jiménez, Fluid Phase Equilib. 182, 353 (2001)Google Scholar
  128. 128.
    K.A. Kurnia, M.I.A. Mutalib, T. Murugesan, B. Ariwahjoedi, J. Solution Chem. 40, 818 (2011)Google Scholar
  129. 129.
    M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe, A.B. Sawant, J. Solution Chem. 40, 415 (2011)Google Scholar
  130. 130.
    H.E. Hoga, R.B. Torres, J. Chem. Thermodyn. 43, 1104 (2011)Google Scholar
  131. 131.
    A. Pal, R. Gaba, H. Kumar, J. Solution Chem. 40, 786 (2011)Google Scholar
  132. 132.
    P.W. Bridgman, Proc. Am. Acad. Arts Sci. 61, 57 (1926)Google Scholar
  133. 133.
    Y. Xu, J. Yao, C. Wang, H. Li, J. Chem. Eng. Data 57, 298 (2012)Google Scholar
  134. 134.
    D. Shao, X. Lu, W. Fang, Y. Guo, L. Xu, J. Chem. Eng. Data 57, 937 (2012)Google Scholar
  135. 135.
    J.J. Cano-Gómez, G.A. Iglesias-Silva, M. Ramos-Estrada, K.R. Hall, J. Chem. Eng. Data 57, 2560 (2012)Google Scholar
  136. 136.
    L.F. Sanz, J.A. González, I.G. De La Fuente, J.C. Cobos, J. Mol. Liq. 172, 26 (2012)Google Scholar
  137. 137.
    Y. Xu, B. Chen, W. Qian, H. Li, J. Chem. Thermodyn. 58, 449 (2013)Google Scholar
  138. 138.
    D.M. Bajić, E.M. Živković, S.P. Šerbanović, M.L. Kijevčanin, Thermochim. Acta 562, 42 (2013)Google Scholar
  139. 139.
    F. Kermanpour, H.Z. Niakan, T. Sharifi, J. Chem. Eng. Data 58, 1086 (2013)Google Scholar
  140. 140.
    A. Estrada-Baltazar, G.A. Iglesias-Silva, C. Caballero-Ceró, J. Chem. Eng. Data 58, 3351 (2013)Google Scholar
  141. 141.
    G.P. Dubey, P. Kaur, Fluid Phase Equilib. 354, 114 (2013)Google Scholar
  142. 142.
    C. Zhu, S. Han, J. Liu, Y. Ma, J. Chem. Eng. Data 59, 880 (2014)Google Scholar
  143. 143.
    W.M.D. Wan Normazan, N.A. Sairi, Y. Alias, A.F. Udaiyappan, A. Jouyban, M. Khoubnasabjafari, J. Chem. Eng. Data 59, 2337 (2014)Google Scholar
  144. 144.
    A. Hassein-bey-Larouci, O. Igoujilen, A. Aitkaci, J.J. Segovia, M.A. Villamanan, Thermochim. Acta 589, 90 (2014)Google Scholar
  145. 145.
    D.M. Bajić, E.M. Zivković, S.S. Serbanović, M.L. Kijevcanin, J. Chem. Eng. Data 59, 3677 (2014)Google Scholar
  146. 146.
    G. Raabe, R.J. Sadus, J. Chem. Phys. 137, 104512 (2012)ADSGoogle Scholar
  147. 147.
    J. Medina, R. Prosmiti, P. Villarreal, G. Delgado-Barrio, G. Winter, B. González, J. Aleman, C. Collado, Chem. Phys. 388, 9 (2011)Google Scholar
  148. 148.
    W. Allen, R.L. Rowley, J. Chem. Phys. 106, 10273 (1997)ADSGoogle Scholar
  149. 149.
    K.C. Pratt, W.A. Wakeham, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 73, 997 (1977)Google Scholar
  150. 150.
    X. Chen, R. Hu, H. Feng, L. Chen, H. Lüdemann, J. Chem. Eng. Data 57, 2401 (2012)Google Scholar
  151. 151.
    M.I. Emel’yanov, F.M. Samigullin, Zh. Sturkturnoi Khim. 12, 585 (1971)Google Scholar
  152. 152.
    O. Suárez-Iglesias, I. Medina, M. de los Ángeles Sanz, C. Pizarro, J.L. Bueno, J. Chem. Eng. Data 60, 2757 (2015)Google Scholar
  153. 153.
    M. Holz, S.R. Heil, Phys. Chem. Chem. Phys. 2, 4740 (2000)Google Scholar
  154. 154.
    P.S. Tofts, D. Lloyd, C.A. Clark, G.J. Barker, G.J.M. Parker, P. McConville, C. Baldock, Magn. Reson. Med. 43, 368 (2000)Google Scholar
  155. 155.
    S. Meckl, M.D. Zeidler, Mol. Phys. 63, 85 (1988)ADSGoogle Scholar
  156. 156.
    T. Kulschewski, J. Pleiss, Mol. Simul. 39, 754 (2013)Google Scholar
  157. 157.
    E. Moine, R. Privat, B. Sirjean, J. Jaubert, J. Phys. Chem. Ref. Data 46, 033102 (2017)ADSGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Stuttgart, Institute of Thermodynamics and Thermal Process EngineeringStuttgartGermany

Personalised recommendations