Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1529–1545 | Cite as

On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data

  • Jörg Baz
  • Niels Hansen
  • Joachim GrossEmail author
Regular Article
  • 16 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Parameterization of classical force fields often suffers from highly correlated parameters. In the present work the hypothesis that transport properties such as shear viscosity or self-diffusion coefficient can be used to decouple force field parameters that were fitted to static thermodynamic properties, such as saturation vapor pressure and liquid density is investigated. Here 1-propanol was studied where united-atom sites are described through Mie potentials and point charges. Four models were selected that gave about the same level of agreement with experimental liquid densities and vapor pressures. Shear viscosity and self-diffusion coefficients were evaluated with the aim to discriminate the models. However, the degeneracy of force field parameters observed in the static properties was also observed in the dynamic properties. We conclude that meaningful parameterizations for transferable force fields should simultaneously consider several molecules from a homologous series in order to define a less degenerate optimization problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11734_2019_80178_MOESM1_ESM.pdf (305 kb)
On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data

References

  1. 1.
    M.B.H. Ketko, J.J. Potoff, Mol. Simul. 33, 769 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Hemmen, A.Z. Panagiotopoulos, J. Gross, J. Phys. Chem. B 119, 7087 (2015)CrossRefGoogle Scholar
  3. 3.
    W.L. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984)CrossRefGoogle Scholar
  4. 4.
    W.L. Jorgensen, C.J. Swenson, J. Am. Chem. Soc. 107, 569 (1985)CrossRefGoogle Scholar
  5. 5.
    W.L. Jorgensen, C.J. Swenson, J. Am. Chem. Soc. 107, 1489 (1985)CrossRefGoogle Scholar
  6. 6.
    W.L. Jorgensen, J. Phys. Chem. 90, 1276 (1986)CrossRefGoogle Scholar
  7. 7.
    W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988)CrossRefGoogle Scholar
  8. 8.
    J.M. Briggs, T. Matsui, W.L. Jorgensen, J. Comput. Chem. 11, 958 (1990)CrossRefGoogle Scholar
  9. 9.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)CrossRefGoogle Scholar
  10. 10.
    M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 103, 4508 (1999)CrossRefGoogle Scholar
  11. 11.
    B. Chen, J.I. Siepmann, J. Phys. Chem. B 103, 5370 (1999)CrossRefGoogle Scholar
  12. 12.
    C.D. Wick, M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 104, 8008 (2000)CrossRefGoogle Scholar
  13. 13.
    B. Chen, J.J. Potoff, J.I. Siepmann, J. Phys. Chem. B 105, 3093 (2001)CrossRefGoogle Scholar
  14. 14.
    J.M. Stubbs, J.J. Potoff, J.I. Siepmann, J. Phys. Chem. B 108, 17596 (2004)CrossRefGoogle Scholar
  15. 15.
    C.D. Wick, J.M. Stubbs, N. Rai, J.I. Siepmann, J. Phys. Chem. B 109, 18974 (2005)CrossRefGoogle Scholar
  16. 16.
    J.R. Errington, A.Z. Panagiotopoulos, J. Chem. Phys. 111, 9731 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    S. Toxvaerd, J. Chem. Phys. 93, 4290 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    S. Toxvaerd, J. Chem. Phys. 107, 5197 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    C. Nieto-Draghi, P. Bonnaud, P. Ungerer, J. Phys. Chem. C 111, 15686 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Ferrando, V. Lachet, J. Teuler, A. Boutin, J. Phys. Chem. B 113, 5985 (2009)CrossRefGoogle Scholar
  21. 21.
    N. Ferrando, V. Lachet, A. Boutin, J. Phys. Chem. B 114, 8680 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Ferrando, V. Lachet, A. Boutin, J. Phys. Chem. B 116, 3239 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Pérez-Pellitero, E. Bourasseau, I. Demachy, J. Ridard, P. Ungerer, A.D. Mackie, J. Phys. Chem. B 112, 9853 (2008)CrossRefGoogle Scholar
  24. 24.
    J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)CrossRefGoogle Scholar
  25. 25.
    J.J. Potoff, G. Kamath, J. Chem. Eng. Data 59, 3144 (2014)CrossRefGoogle Scholar
  26. 26.
    J.R. Mick, M.S. Barhaghi, B. Jackman, K. Rushaidat, L. Schwiebert, J.J. Potoff, J. Chem. Phys. 143, 114504 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Barhaghi, J.R. Mick, J.J. Potoff, Mol. Phys. 115, 1378 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Hemmen, J. Gross, J. Phys. Chem. B 119, 11695 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Weidler, J. Gross, Ind. Eng. Chem. Res. 55, 12123 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Weidler, J. Gross, Fluid Phase Equilib. 470, 101 (2018)CrossRefGoogle Scholar
  31. 31.
    C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)ADSCrossRefGoogle Scholar
  32. 32.
    F. Haase, R. Ahlrichs, J. Comput. Chem. 14, 907 (1993)CrossRefGoogle Scholar
  33. 33.
    A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    TURBOMOLE V6.6 2014 a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007 (2018), available from http://www.turbomole.com
  35. 35.
    H.A. Lorentz, Ann. Phys. 248, 127 (1881)CrossRefGoogle Scholar
  36. 36.
    D. Berthelot, Compt. Rendus 126, 1703 (1898)Google Scholar
  37. 37.
    J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Gross, G. Sadowski, Fluid Phase Equilib. 168, 183 (2000)CrossRefGoogle Scholar
  39. 39.
    J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)CrossRefGoogle Scholar
  40. 40.
    T. van Westen, T.J.H. Vlugt, J. Gross, J. Phys. Chem. B 115, 7872 (2011)CrossRefGoogle Scholar
  41. 41.
    A.Z. Panagiotopoulos, V. Wong, M.A. Floriano, Macromolec. 31, 912 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    A.Z. Panagiotopoulos, J. Phys.: Condens. Matter 12, R25 (2000)ADSGoogle Scholar
  43. 43.
    J.R. Errington, J. Chem. Phys. 118, 9915 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    M. Fitzgerald, R.R. Picard, R.N. Silver, Europhys. Lett. 46, 282 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    J. Wang, T.K. Tay, R.H. Swendsen, Phys. Rev. Lett. 82, 476(1999)ADSCrossRefGoogle Scholar
  46. 46.
    J.K. Singh, J.R. Errington, J. Phys. Chem. B 110, 1369 (2006)CrossRefGoogle Scholar
  47. 47.
    A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    D. Frenkel, G. Mooij, B. Smit, J. Phys.: Condens. Matter 4, 3053 (1992)ADSGoogle Scholar
  49. 49.
    J.I. Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992)ADSCrossRefGoogle Scholar
  50. 50.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  52. 52.
    M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1, 19 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    M.J. Abraham, User Specified non-bonded potentials in Gromacs 2014Google Scholar
  54. 54.
    R.W. Hockney, Methods Comput. Phys. 9, 136 (1970)Google Scholar
  55. 55.
    I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, J. Mater. Chem. 16, 1911 (2006)CrossRefGoogle Scholar
  56. 56.
    T.M. Nymand, P. Linse, J. Chem. Phys. 112, 6152 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)ADSCrossRefGoogle Scholar
  58. 58.
    B. Hess, J. Chem. Theory Comput. 4, 116 (2008)CrossRefGoogle Scholar
  59. 59.
    B. Hess, H. Bekker, H.J.C. Berendsen, J. Comput. Chem. 18, 1463 (1997)CrossRefGoogle Scholar
  60. 60.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    H.J.C. Berendsen, W.F. van Gunsteren, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)ADSCrossRefGoogle Scholar
  62. 62.
    W.M. Haynes, CRC handbook of chemistry and physics (CRC Press, 2012)Google Scholar
  63. 63.
    P.E. Smith, W.F. van Gunsteren, Chem. Phys. Lett. 215, 315 (1993)ADSCrossRefGoogle Scholar
  64. 64.
    B. Hess, J. Chem. Phys. 116, 209 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    B.L. Holian, D.J. Evans, J. Chem. Phys. 78, 5147 (1983)ADSCrossRefGoogle Scholar
  66. 66.
    N. Wiener, Acta Math. 55, 117 (1930)MathSciNetCrossRefGoogle Scholar
  67. 67.
    A. Khintchine, Math. Ann. 109, 604 (1934)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Y. Zhang, A. Otani, E.J. Maginn, J. Chem. Theory Comput. 11, 3537 (2015)CrossRefGoogle Scholar
  69. 69.
    A. Einstein, Ann. Phys. 322, 549 (1905)CrossRefGoogle Scholar
  70. 70.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford Univ. Press, Oxford, 1987)Google Scholar
  71. 71.
    I. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)CrossRefGoogle Scholar
  72. 72.
    M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 124105 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    P. Winget, G.D. Hawkins, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 104, 4726 (2000)CrossRefGoogle Scholar
  74. 74.
    G.H. Thomson, Int. J. Thermophys. 17, 223 (1996)ADSCrossRefGoogle Scholar
  75. 75.
    J.H. Mathews, J. Am. Chem. Soc. 48, 562 (1926)CrossRefGoogle Scholar
  76. 76.
    J. Polák, S. Murakami, V.T. Lam, H.D. Pflug, G.C. Benson, Can. J. Chem. 48, 2457 (1970)CrossRefGoogle Scholar
  77. 77.
    I. Brown, W. Fock, F. Smith, J. Chem. Thermodyn. 1, 273 (1969)CrossRefGoogle Scholar
  78. 78.
    R. Riggio, H.E. Martinez, N.Z. de Salas, J.F. Ramos, Can. J. Chem. 73, 431 (1995)CrossRefGoogle Scholar
  79. 79.
    R. Riggio, H.E. Martinez, N.Z.D. Salas, M.D.D. Toigo, J.F. Ramos, Can. J. Chem. 73, 1274 (1995)CrossRefGoogle Scholar
  80. 80.
    R.R. Riggio, M.H. Ubeda, J.A. Espindola, Can. J. Chem. 59, 3305 (1981)CrossRefGoogle Scholar
  81. 81.
    M.J. Armourdam, G.S. Laddha, J. Chem. Eng. Data 12, 389 (1967)CrossRefGoogle Scholar
  82. 82.
    R. Riggio, H.E. Martinez, J.A. Espindola, J.F. Ramos, J. Chem. Eng. Data 29, 11 (1984)CrossRefGoogle Scholar
  83. 83.
    C. Lafuente, J. Pardo, V. Rodriguez, F.M. Royo, J.S. Urieta, J. Chem. Eng. Data 38, 554 (1993)CrossRefGoogle Scholar
  84. 84.
    B. Sreenivasulu, P.R. Naidu, J. Chem. Eng. Data 38, 619 (1993)CrossRefGoogle Scholar
  85. 85.
    B.V. Mallu, Y.C.V. Rao, J. Chem. Eng. Data 35, 444 (1990)CrossRefGoogle Scholar
  86. 86.
    J. Karunakar, K.D. Reddy, M.P.V. Rao, J. Chem. Eng. Data 27, 348 (1982)CrossRefGoogle Scholar
  87. 87.
    J.C. Mouli, P.R. Naidu, N.V. Choudary, J. Chem. Eng. Data 31, 493 (1986)CrossRefGoogle Scholar
  88. 88.
    A. Sacco, A.K. Rakshit, J. Chem. Thermodyn. 7, 257 (1975)CrossRefGoogle Scholar
  89. 89.
    T.M. Aminabhavi, M.I. Aralaguppi, S.B. Harogoppad, R.H. Balundgi, J. Chem. Eng. Data 38, 31 (1993)CrossRefGoogle Scholar
  90. 90.
    G. Narayanaswamy, G. Dharmaraju, G.K. Raman, J. Chem. Thermodyn. 13, 327 (1981)CrossRefGoogle Scholar
  91. 91.
    G.W. Smith, L.V. Sorg, J. Phys. Chem. 45, 671 (1941)CrossRefGoogle Scholar
  92. 92.
    T. Okano, H. Ogawa, S. Murakami, Can. J. Chem. 66, 713 (1988)CrossRefGoogle Scholar
  93. 93.
    M.E. Friedman, H.A. Scheraga, J. Phys. Chem. 69, 3795 (1965)CrossRefGoogle Scholar
  94. 94.
    A. Radecki, B. Kaczmarek, J. Chem. Eng. Data 25, 230 (1980)CrossRefGoogle Scholar
  95. 95.
    C. Berro, M. Rogalski, A. Peneloux, J. Chem. Eng. Data 27, 352 (1982)CrossRefGoogle Scholar
  96. 96.
    C. Berro, A. Peneloux, J. Chem. Eng. Data 29, 206 (1984)CrossRefGoogle Scholar
  97. 97.
    K.V.R. Reddy, K. Rambabu, T. Devarajulu, A. Krishnaiah, Phys. Chem. Liq. 28, 161 (1994)CrossRefGoogle Scholar
  98. 98.
    F.M. Jaeger, Z. Anorg. Allg. Chem. 101, 1 (1917)CrossRefGoogle Scholar
  99. 99.
    K.P. Rao, K.S. Reddy, Thermochim. Acta 91, 321 (1985)CrossRefGoogle Scholar
  100. 100.
    R. Riggio, J.F. Ramos, H.E. Martinez, J.A. Espindola, H.N. Solimo, J. Chem. Eng. Data 28, 352 (1983)CrossRefGoogle Scholar
  101. 101.
    K. Nakanishi, Bull. Chem. Soc. Jpn. 33, 793 (1960)CrossRefGoogle Scholar
  102. 102.
    H. Kubota, Y. Tanaka, T. Makita, Int. J. Thermophys. 8, 47 (1987)ADSCrossRefGoogle Scholar
  103. 103.
    A.K. Nain, R. Sharma, A.G. Ali, J. Mol. Liq. 144, 138 (2009)CrossRefGoogle Scholar
  104. 104.
    R.D. Peralta, R. Infante, G. Cortez, A. Cisneros, J. Wisniak, Chem. Eng. Commun. 192, 1684 (2005)CrossRefGoogle Scholar
  105. 105.
    A.K. Nain, J. Solution Chem. 42, 1404 (2013)CrossRefGoogle Scholar
  106. 106.
    P.S. Tofts, D. Lloyd, C.A. Clark, G.J. Barker, G.J.M. Parker, P. McConville, C. Baldock, J.M. Pope, Magn. Reson. Med. 43, 368 (2000)CrossRefGoogle Scholar
  107. 107.
    M.J. Assael, S.K. Polimatidou, Int. J. Thermophys. 15, 95 (1994)ADSCrossRefGoogle Scholar
  108. 108.
    D. Papaioannou, C. Panayiotou, J. Chem. Eng. Data 39, 463 (1994)CrossRefGoogle Scholar
  109. 109.
    D. Papaioannou, C. Panayiotou, J. Chem. Eng. Data 40, 202 (1995)CrossRefGoogle Scholar
  110. 110.
    T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 40, 462 (1995)CrossRefGoogle Scholar
  111. 111.
    D. Papaioannou, M. Bridakis, C.G. Panayiotou, J. Chem. Eng. Data 38, 370 (1993)CrossRefGoogle Scholar
  112. 112.
    Y. Tanaka, Y. Matsuda, H. Fujiwara, H. Kubota, T. Makita, Int. J. Thermophys. 8, 147 (1987)ADSCrossRefGoogle Scholar
  113. 113.
    E. Romano, J.L. Trenzado, E. González, J.S. Matos, L. Segade, E. Jiménez, Fluid Phase Equilib. 211, 219 (2003)CrossRefGoogle Scholar
  114. 114.
    D. Agarwal, M. Singh, J. Chem. Eng. Data 49, 1218 (2004)CrossRefGoogle Scholar
  115. 115.
    B. González, N. Calvar, A. Domnguez, J. Tojo, J. Chem. Thermodyn. 39, 322 (2007)CrossRefGoogle Scholar
  116. 116.
    M.M.H. Bhuiyan, J. Ferdaush, M.H. Uddin, J. Chem. Thermodyn. 39, 675 (2007)CrossRefGoogle Scholar
  117. 117.
    N. Calvar, E. Gómez, B. Gonzalez, A. Dominguez, J. Chem. Eng. Data 54, 2229 (2009)CrossRefGoogle Scholar
  118. 118.
    R.L. Gardas, S. Oswal, Thermochim. Acta 479, 17 (2008)CrossRefGoogle Scholar
  119. 119.
    H.F. Costa, H. Lourenco, I. Johnson, A.G.M. Ferreira, I.M.A. Fonseca, J. Chem. Eng. Data 54, 2845 (2009)CrossRefGoogle Scholar
  120. 120.
    A. Baylaucq, G. Watson, C. Zéberg-Mikkelsen, J. Bazile, C. Boned, J. Chem. Eng. Data 54, 2715 (2009)CrossRefGoogle Scholar
  121. 121.
    W. Weber, Rheol. Acta 14, 1012 (1975)CrossRefGoogle Scholar
  122. 122.
    P.S. Nikam, B.S. Jagdale, A.B. Sawant, M. Hasan, J. Chem. Eng. Data 45, 214 (2000)CrossRefGoogle Scholar
  123. 123.
    E.J. González, L. Alonso, A. Domnguez, J. Chem. Eng. Data 51, 1446 (2006)CrossRefGoogle Scholar
  124. 124.
    H. Djojoputro, S. Ismadji, J. Chem. Eng. Data 50, 1343 (2005)CrossRefGoogle Scholar
  125. 125.
    R. Belda Maximino, Phys. Chem. Liq. 47, 515 (2009)CrossRefGoogle Scholar
  126. 126.
    R. Sadeghi, S. Azizpour, J. Chem. Eng. Data 56, 240 (2011)CrossRefGoogle Scholar
  127. 127.
    L. Segade, H. Casas, O. Cabeza, M. Prego, S. Garca-Garabal, C. Franjo, E. Jiménez, Fluid Phase Equilib. 182, 353 (2001)CrossRefGoogle Scholar
  128. 128.
    K.A. Kurnia, M.I.A. Mutalib, T. Murugesan, B. Ariwahjoedi, J. Solution Chem. 40, 818 (2011)CrossRefGoogle Scholar
  129. 129.
    M. Hasan, A.P. Hiray, U.B. Kadam, D.F. Shirude, K.J. Kurhe, A.B. Sawant, J. Solution Chem. 40, 415 (2011)CrossRefGoogle Scholar
  130. 130.
    H.E. Hoga, R.B. Torres, J. Chem. Thermodyn. 43, 1104 (2011)CrossRefGoogle Scholar
  131. 131.
    A. Pal, R. Gaba, H. Kumar, J. Solution Chem. 40, 786 (2011)CrossRefGoogle Scholar
  132. 132.
    P.W. Bridgman, Proc. Am. Acad. Arts Sci. 61, 57 (1926)CrossRefGoogle Scholar
  133. 133.
    Y. Xu, J. Yao, C. Wang, H. Li, J. Chem. Eng. Data 57, 298 (2012)CrossRefGoogle Scholar
  134. 134.
    D. Shao, X. Lu, W. Fang, Y. Guo, L. Xu, J. Chem. Eng. Data 57, 937 (2012)CrossRefGoogle Scholar
  135. 135.
    J.J. Cano-Gómez, G.A. Iglesias-Silva, M. Ramos-Estrada, K.R. Hall, J. Chem. Eng. Data 57, 2560 (2012)CrossRefGoogle Scholar
  136. 136.
    L.F. Sanz, J.A. González, I.G. De La Fuente, J.C. Cobos, J. Mol. Liq. 172, 26 (2012)CrossRefGoogle Scholar
  137. 137.
    Y. Xu, B. Chen, W. Qian, H. Li, J. Chem. Thermodyn. 58, 449 (2013)CrossRefGoogle Scholar
  138. 138.
    D.M. Bajić, E.M. Živković, S.P. Šerbanović, M.L. Kijevčanin, Thermochim. Acta 562, 42 (2013)CrossRefGoogle Scholar
  139. 139.
    F. Kermanpour, H.Z. Niakan, T. Sharifi, J. Chem. Eng. Data 58, 1086 (2013)CrossRefGoogle Scholar
  140. 140.
    A. Estrada-Baltazar, G.A. Iglesias-Silva, C. Caballero-Ceró, J. Chem. Eng. Data 58, 3351 (2013)CrossRefGoogle Scholar
  141. 141.
    G.P. Dubey, P. Kaur, Fluid Phase Equilib. 354, 114 (2013)CrossRefGoogle Scholar
  142. 142.
    C. Zhu, S. Han, J. Liu, Y. Ma, J. Chem. Eng. Data 59, 880 (2014)CrossRefGoogle Scholar
  143. 143.
    W.M.D. Wan Normazan, N.A. Sairi, Y. Alias, A.F. Udaiyappan, A. Jouyban, M. Khoubnasabjafari, J. Chem. Eng. Data 59, 2337 (2014)CrossRefGoogle Scholar
  144. 144.
    A. Hassein-bey-Larouci, O. Igoujilen, A. Aitkaci, J.J. Segovia, M.A. Villamanan, Thermochim. Acta 589, 90 (2014)CrossRefGoogle Scholar
  145. 145.
    D.M. Bajić, E.M. Zivković, S.S. Serbanović, M.L. Kijevcanin, J. Chem. Eng. Data 59, 3677 (2014)CrossRefGoogle Scholar
  146. 146.
    G. Raabe, R.J. Sadus, J. Chem. Phys. 137, 104512 (2012)ADSCrossRefGoogle Scholar
  147. 147.
    J. Medina, R. Prosmiti, P. Villarreal, G. Delgado-Barrio, G. Winter, B. González, J. Aleman, C. Collado, Chem. Phys. 388, 9 (2011)CrossRefGoogle Scholar
  148. 148.
    W. Allen, R.L. Rowley, J. Chem. Phys. 106, 10273 (1997)ADSCrossRefGoogle Scholar
  149. 149.
    K.C. Pratt, W.A. Wakeham, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 73, 997 (1977)CrossRefGoogle Scholar
  150. 150.
    X. Chen, R. Hu, H. Feng, L. Chen, H. Lüdemann, J. Chem. Eng. Data 57, 2401 (2012)CrossRefGoogle Scholar
  151. 151.
    M.I. Emel’yanov, F.M. Samigullin, Zh. Sturkturnoi Khim. 12, 585 (1971)Google Scholar
  152. 152.
    O. Suárez-Iglesias, I. Medina, M. de los Ángeles Sanz, C. Pizarro, J.L. Bueno, J. Chem. Eng. Data 60, 2757 (2015)CrossRefGoogle Scholar
  153. 153.
    M. Holz, S.R. Heil, Phys. Chem. Chem. Phys. 2, 4740 (2000)CrossRefGoogle Scholar
  154. 154.
    P.S. Tofts, D. Lloyd, C.A. Clark, G.J. Barker, G.J.M. Parker, P. McConville, C. Baldock, Magn. Reson. Med. 43, 368 (2000)CrossRefGoogle Scholar
  155. 155.
    S. Meckl, M.D. Zeidler, Mol. Phys. 63, 85 (1988)ADSCrossRefGoogle Scholar
  156. 156.
    T. Kulschewski, J. Pleiss, Mol. Simul. 39, 754 (2013)CrossRefGoogle Scholar
  157. 157.
    E. Moine, R. Privat, B. Sirjean, J. Jaubert, J. Phys. Chem. Ref. Data 46, 033102 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Stuttgart, Institute of Thermodynamics and Thermal Process EngineeringStuttgartGermany

Personalised recommendations