The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1625–1633 | Cite as

Fragility analysis using vibration energy harvesters

  • George Vathakkattil Joseph
  • Guangbo Hao
  • Vikram PakrashiEmail author
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications


Fragility curves are widely used as indicators of vulnerability of infrastructure to structural/performance demands posed on it by the environment. Fragility of a structure may change due to variety of factors during its lifetime. This renders the applicability of fragility for risk assessment to be reliant on periodically updated estimation. Derivation of fragility requires an estimate of the capacity of the structure and the demand due to external factors. Vibration data can be used as a medium to estimate both capacity and demand on the system. Energy harvesters being self-sufficient vibration sensors are proposed as devices capable of estimating fragility curves in lieu of other inertial sensors. The concept is illustrated here using simplified models. The reduction in system complexity due to the self-powered nature of the energy harvester along with the proposed ability to compute probability of failure make energy harvesters attractive options for monitoring civil infrastructure and thereby minimizes risk at various stages in its lifetime.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rota, A. Penna, G. Magenes, Eng. Struct. 32, 1312 (2010) CrossRefGoogle Scholar
  2. 2.
    A. Quilligan, A. O’Connor, V. Pakrashi, Eng. Struct. 36, 270 (2012) CrossRefGoogle Scholar
  3. 3.
    A. Bagchi, Modal Analysis 11, 1469 (2005) Google Scholar
  4. 4.
    A. Berman, E. Nagy, AIAA J. 21, 1168 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    S. Kaloni, M. Shrikhande, Procedia Eng. 199, 1002 (2017) CrossRefGoogle Scholar
  6. 6.
    C. Farrar, G. James III, J. Sound Vib. 205, 1 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    A.R.M. Siddique, S. Mahmud, B. Van Heyst, Energy Convers. Manag. 106, 728 (2015) CrossRefGoogle Scholar
  8. 8.
    M. Peigney, D. Siegert, Smart Mater. Struct. 22, 095019 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    F.U. Khan, I. Ahmad, Shock Vib. 2016, 1340402 (2016) Google Scholar
  10. 10.
    J. Matiko, N. Grabham, S. Beeby, M. Tudor, Meas. Sci. Technol. 25, 012002 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    K.M. Farinholt, N. Miller, W. Sifuentes, J. MacDonald, G. Park, C.R. Farrar, Struct. Health Monit. 9, 269 (2010) CrossRefGoogle Scholar
  12. 12.
    P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Mech. Syst. Signal Process. 106, 265 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    Y.-J. Wang, C.-D. Chen, C.-C. Lin, J.-H. Yu, Micromachines 6, 312 (2015) CrossRefGoogle Scholar
  14. 14.
    G. Vathakkattil Joseph, G. Hao, V. Pakrashi, J. Sound Vib. 437, 29 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    A. Erturk, D.J. Inman, Piezoelectric energy harvesting (John Wiley & Sons, 2011) Google Scholar
  16. 16.
    S. Ibrahim, J. Spacecr. Rockets 14, 696 (1977) ADSCrossRefGoogle Scholar
  17. 17.
    J.-N. Juang, R.S. Pappa, J. Guid. Control Dyn. 8, 620 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    L. Ljung, System identification: theory for the user (Prentice-Hall, 1987) Google Scholar
  19. 19.
    Z. Peng, F. Chu, Mech. Syst. Signal Process. 18, 199 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    M. Ruzzene, A. Fasana, L. Garibaldi, B. Piombo, Mech. Syst. Signal Process. 11, 207 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    E. Reynders, Arch. Comput. Methods Eng. 19, 51 (2012) MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.C. Kaimal, J. Wyngaard, Y. Izumi, O. Coté, Q. J. Roy. Meteor. Soc. 98, 563 (1972) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dynamical Systems and Risk Laboratory, School of Mechanical and Materials Engineering, University College DublinDublinIreland
  2. 2.Marine and Renewable Energy Ireland (MaREI) Centre, University College DublinDublinIreland
  3. 3.School of Engineering, University College CorkCorkIreland
  4. 4.Marine and Renewable Energy Ireland (MaREI) Centre, Environmental Research Institute, University College CorkCorkIreland
  5. 5.School of Mechanical and Materials Engineering, University College DublinDublinIreland

Personalised recommendations