Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 3, pp 713–718 | Cite as

Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications

  • Alice GaldiEmail author
  • Christopher M. Pierce
  • L. Cultrera
  • Gowri Adhikari
  • Walter Andreas Schroeder
  • Hanjong Paik
  • Darrel G. Schlom
  • Johannes K. Nangoi
  • Tomas A. Arias
  • E. Lochocki
  • Christopher Parzyck
  • Kyle M. Shen
  • Jared M. Maxson
  • Ivan V. Bazarov
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Superconductivity and Functional Oxides

Abstract

Recent research on photocathodes for photoinjectors has focused on the understanding of the photoemission process at low energy (i.e. at photon energy close to the material’s work function) as well as on the study of ordered and innovative photocathode materials, with the aim of minimizing the emittance at the cathode. We here present a preliminary study on low energy photoemission from (100) oriented Ba1−xLaxSnO3 thin films, characterizing their quantum efficiency and the mean transverse energy of the photoelectrons. The aim of the study is to pave the way for future experiments on innovative photocathodes based on perovkite oxides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    T. Li, B.L. Rickman, W.A. Schroeder, J. Appl. Phys. 117, 134901 (2015) ADSCrossRefGoogle Scholar
  2. 2.
    S. Karkare et al., Phys. Rev. B 95, 075439 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    J. Feng et al., Appl. Phys. Lett. 107, 134101 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    I.V. Bazarov et al., Appl. Phys. Lett. 98, 224101 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    L. Cultrera, S. Karkare, H. Lee, X. Liu, I. Bazarov, B. Dunham, Phys. Rev. ST Accel. Beams 18, 113401 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    A. Damascelli, Phys. Scr. T109, 61 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    J.K. Nangoi, T.A. Arias, S. Karkare, H.A. Padmore, W.A. Schroeder, in Proceedings of 9th International Particle Accelerator Conference (IPAC’18), Vancouver BC, Canada, May 2018, TUPMF065, pp. 1414–1416 Google Scholar
  8. 8.
    P. Michelato, Nucl. Instrum. Methods A 393, 455 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    H. Paik et al., APL Mater. 5, 116107 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    H. Lee et al., Rev. Sci. Instrum. 86, 073309 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    E. Lochocki, H. Paik, M. Uchida, D.G. Schlom, K.M. Shen, Appl. Phys. Lett. 112, 181603 (2018) ADSCrossRefGoogle Scholar
  12. 12.
    J.K. Bae, L. Cultrera, P. DiGiacomo, I.V. Bazarov, Appl. Phys. Lett. 112, 154101 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman, Phys. Rev. ST Accel. Beams 14, 043501 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    A. Galdi et al., in Proceedings of 9th International Particle Accelerator Conference (IPAC’18), Vancouver BC, Canada, May 2018, TUPML027, pp. 1597–1600 Google Scholar
  15. 15.
    T. Susaki, A. Makishima, H. Hosono, Phys. Rev. B 84, 115456 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    U. Kim, C. Park, Y.M. Kim, J. Shin, K. Char, APL Mater. 4, 071102 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alice Galdi
    • 1
    Email author
  • Christopher M. Pierce
    • 1
  • L. Cultrera
    • 1
  • Gowri Adhikari
    • 2
  • Walter Andreas Schroeder
    • 2
  • Hanjong Paik
    • 3
    • 4
  • Darrel G. Schlom
    • 3
    • 5
  • Johannes K. Nangoi
    • 6
  • Tomas A. Arias
    • 6
  • E. Lochocki
    • 3
    • 6
  • Christopher Parzyck
    • 6
  • Kyle M. Shen
    • 5
    • 6
  • Jared M. Maxson
    • 1
  • Ivan V. Bazarov
    • 1
  1. 1.CLASSE, Cornell UniversityIthacaUSA
  2. 2.Department of PhysicsUniversity of IllinoisChicagoUSA
  3. 3.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  4. 4.PARADIM, Cornell UniversityIthacaUSA
  5. 5.Kavli Institute at Cornell for Nanoscale ScienceIthacaUSA
  6. 6.LASSP, Department of Physics, Cornell UniversityIthacaUSA

Personalised recommendations