Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1631–1638 | Cite as

Molecular simulations of enzymes under non-natural conditions

  • Valerio Ferrario
  • Jürgen Pleiss
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

The development of novel sustainable biocatalytic processes requires systematic and comprehensive tools for engineering, integrated into a framework for the simultaneous optimization of enzyme, substrate, solvent, and reaction conditions. The experimentally determined biochemical properties of the biocatalyst are mediated by four interactions: between substrate and solvent, protein and solvent, protein and substrate, as well as protein–protein interactions. Molecular dynamics simulations were applied to study these interactions from first principles. The interaction of the substrate with the solvent was described by its activity coefficient, the interaction of the substrate with the protein and substrate access to the active site were characterized by a binding free energy along a reaction coordinate, and the protein–solvent interaction was modeled by a Langmuir model. The simulation of protein aggregation identified a delicate balance of kinetics and thermodynamics of competing contacts during the nucleation process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Nature 485, 185 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Green, N.J. Turner, Perspect. Sci. 9, 42 (2016)CrossRefGoogle Scholar
  3. 3.
    J.-M. Choi, S.-S. Han, H.-S. Kim, Biotechnol. Adv. 33, 1443 (2015)CrossRefGoogle Scholar
  4. 4.
    F.H. Arnold, Acc. Chem. Res. 31, 125 (1998)CrossRefGoogle Scholar
  5. 5.
    K. Steiner, H. Schwab, Comput. Struct. Biotechnol. J. 2, e201209010 (2012)CrossRefGoogle Scholar
  6. 6.
    R.J. Fox, S.C. Davis, E.C. Mundorff, L.M. Newman, V. Gavrilovic, S.K. Ma, L.M. Chung, C. Ching, S. Tam, S. Muley, J. Grate, J. Gruber, J.C. Whitman, R.A. Sheldon, G.W. Huisman, Nat. Biotechnol. 25, 338 (2007)CrossRefGoogle Scholar
  7. 7.
    V. Ferrario, L. Siragusa, C. Ebert, M. Baroni, M. Foscato, G. Cruciani, L. Gardossi, PLoS One 9, e109354 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Bellot, L. Choisnard, E. Castillo, A. Marty, Enzyme Microb. Technol. 28, 362 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Reimer, S. Wedde, S. Staudt, S. Schmidt, D. Höffer, W. Hummel, U. Kragl, U.T. Bornscheuer, H. Gröger, J. Heterocycl. Chem. 54, 391 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Wohlgemuth, Chem. Biochem. Eng. Q 31, 131 (2017)CrossRefGoogle Scholar
  11. 11.
    J.M. Woodley, Phil. Trans. R. Soc. A 376, 201700 (2017)Google Scholar
  12. 12.
    G. Chiandussi, M. Codegone, S. Ferrero, F.E. Varesio, Comparison of multi-objective optimization methodologies for engineering applications (Elsevier Ltd, 2012)Google Scholar
  13. 13.
    Y. Dujardin, I. Chades, PLoS One 13, e0190748 (2018)CrossRefGoogle Scholar
  14. 14.
    P. Buchholz, C. Vogel, W. Reusch, M. Pohl, D. Rother, A. Spieß, J. Pleiss, ChemBioChem 65, 707 (2016)Google Scholar
  15. 15.
    P.C.F. Buchholz, R. Ohs, A.C. Spiess, J. Pleiss, Biotechnol. J. (submitted)Google Scholar
  16. 16.
    P. Tufvesson, J. Lima-Ramos, N. Al Haque, K.V. Gernaey, J.M. Woodley, Org. Process Res. Dev. 17, 1233 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Knap, C. Spear, K. Leiter, R. Becker, D. Powell, Int. J. Numer. Methods Eng. 108, 1649 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Hartmann, L. Delle Site, Eur. Phys. J. Special Topics 224, 2173 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kulschewski, F. Sasso, F. Secundo, M. Lotti, J. Pleiss, J. Biotechnol. 168, 462 (2013)CrossRefGoogle Scholar
  20. 20.
    W. Sutherland, Philos. Mag. Ser. 6 9, 781 (1905)CrossRefGoogle Scholar
  21. 21.
    A. Einstein, Ann. Phys. 322, 549 (1905)CrossRefGoogle Scholar
  22. 22.
    I.-C.Y. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)CrossRefGoogle Scholar
  23. 23.
    V. Ferrario, J. Pleiss, J. Biomol. Struct. Dyn.,  https://doi.org/10.1080/07391102.2018.1461689
  24. 24.
    A. Fredenslund, R.L. Jones, J.M. Prausnitz, AIChE J. 21, 1086 (1975)CrossRefGoogle Scholar
  25. 25.
    V. Ferrario, N. Hansen, J. Pleiss, J. Inorg. Biochem., in pressGoogle Scholar
  26. 26.
    J. Pleiss, Trends Biotechnol. 35, 379 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Pleiss, Trends Biotechnol. 36, 234 (2018)CrossRefGoogle Scholar
  28. 28.
    D.E. Koshland, Angew. Chem. Int. Ed. 33, 2375 (1994)CrossRefGoogle Scholar
  29. 29.
    J. Wang, T. Hou, J. Chem. Theory Comput. 7, 2151 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Wang, T. Hou, J. Comput. Chem. 32, 3505 (2011)CrossRefGoogle Scholar
  31. 31.
    W.L. Jorgensen, J. Tirado-rives, J. Am. Chem. Soc. 110, 1657 (1988)CrossRefGoogle Scholar
  32. 32.
    T. Kulschewski, J. Pleiss, Mol. Simul. 39, 754 (2013)CrossRefGoogle Scholar
  33. 33.
    C. Laane, S. Boeren, K. Vos, C. Veeger, Biotechnol. Bioeng. 30, 81 (1987)CrossRefGoogle Scholar
  34. 34.
    A. Zaks, A.M. Klibanov, J. Biol. Chem. 263, 8017 (1988)Google Scholar
  35. 35.
    J. Abildskov, M.B. Van Leeuwen, C.G. Boeriu, L.A.M. Van Den Broek, C.G. Boeriu, J. Mol. Catal. B Enzym. 85–86, 200 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Hoffmann, M. Voges, C. Held, G. Sadowski, Biophys. Chem. 173–174, 21 (2013)CrossRefGoogle Scholar
  37. 37.
    J.B.A. van Tol, R.M.M. Stevens, W.J. Veldhuizen, J.A. Jongejan, J.A. Duine, Biotechnol. Bioeng. 47, 71 (1995)CrossRefGoogle Scholar
  38. 38.
    G. Bell, A.E.M. Janssen, P.J. Halling, Enzyme Microb. Technol. 20, 471 (1997)CrossRefGoogle Scholar
  39. 39.
    T. Kulschewski, J. Pleiss, Langmuir 32, 8960 (2016)CrossRefGoogle Scholar
  40. 40.
    H.P. Erickson, Biol. Proced. Online 11, 32 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Hutt, T. Kulschewski, J. Pleiss, J. Biomol. Struct. Dyn. 30, 318 (2012)CrossRefGoogle Scholar
  42. 42.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  43. 43.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    W.L. Jorgensen, J. D. Madura, Mol. Phys. 56, 1381 (1985)ADSCrossRefGoogle Scholar
  45. 45.
    R.D. Teasdale, A.R. Carr, R.S.D. Read, J. Theor. Biol. 114, 375 (1985)CrossRefGoogle Scholar
  46. 46.
    A.E. Shannon, M.M. Pedroso, K.J. Chappell, D. Watterson, S. Liebscher, W.M. Kok, D.P. Fairlie, G. Schenk, P.R. Young, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  47. 47.
    L.H. Wang, A.L. Tsai, P.Y. Hsu, J. Biol. Chem. 276, 14737 (2001)CrossRefGoogle Scholar
  48. 48.
    P.V. Coveney, S. Wan, Phys. Chem. Chem. Phys. 18, 30236 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany

Personalised recommendations