Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1605–1624 | Cite as

Reduced-order modeling with multiple scales of electromechanical systems for energy harvesting

  • Claudio MaruccioEmail author
  • Giuseppe Quaranta
  • Giuseppe Grassi
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications

Abstract

New technologies that aim at powering wireless nodes by scavenging the energy from ambient vibrations can be a practical solution for some structural monitoring applications in the near future. In view of possible large-scale applications of piezoelectric energy harvesters, an accurate modeling of the interfaces in these devices is needed for more advanced and reliable simulations, since they might have large influence on functionality and performance of smart monitoring infrastructures. In this perspective, a novel multiscale and multiphysics hybrid approach is proposed to assess the dynamic response of piezoelectric energy harvesting devices. Within the framework of the presented approach, the FE2 method is employed to compute stress and strain levels at the microscale in the most critical interfaces. The displacement-load curve of the whole device (so-called capacity curve or pushover curve) is then obtained by means of the application of a suitable pattern of static forces. Finally, the parameters of a reduced-order model are calibrated on the basis of the nonlinear static analysis. This reduced-order model, in turn, is employed for the efficient dynamic analysis of the energy harvesting device.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Nickell, Comput. Methods Appl. Mech. Eng. 7, 107 (1976) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    K.J. Bathe, S. Gracewski, Comput. Struct. 13, 699 (1981) CrossRefGoogle Scholar
  3. 3.
    S.R. Idelsohn, A. Cardona, Comput. Methods Appl. Mech. Eng. 49, 253 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    G. Kerschen, M. Peeters, J.C. Golinval, A.F. Vakakis, Mech. Syst. Signal Process. 23, 170 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J.C. Golinval, Mech. Syst. Signal Process. 23, 195 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    L. Renson, G. Deliége, G. Kerschen, Meccanica 49, 1901 (2014) MathSciNetCrossRefGoogle Scholar
  7. 7.
    J.P. Noel, L. Renson, C. Grappasonni, G. Kerschen, Mech. Syst. Signal Process. 74, 95 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    W. Lacarbonara, B. Carboni, G. Quaranta, Meccanica 51, 2629 (2016) MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Tiso, E. Jansen, M. Abdalla, AIAA J. 49, 2295 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Chopra, R.K. Goel, Earthquake Eng. Struct. Dyn. 31, 561 (2002) CrossRefGoogle Scholar
  11. 11.
    F. Otero, S. Oller, X. Martinez, Arch. Comput. Methods Eng. 25, 479 (2016) CrossRefGoogle Scholar
  12. 12.
    K. Matous, M.G.D. Geers, V.G. Kouznetsova, A. Gillman, J. Comput. Phys. 330, 192 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    F. Covezzi, S. de Miranda, F. Fritzen, S. Marfia, E. Sacco, Meccanica 53, 1291 (2018) CrossRefGoogle Scholar
  14. 14.
    A. Moyeda, J. Fish, Comput. Mech. 62, 685 (2017) CrossRefGoogle Scholar
  15. 15.
    J. Oliver, M. Caicedo, A.E. Huespe, J.A. Hernández, E. Roubin, Comput. MethodsAppl. Mech. Eng. 313, 560 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    M. Leuschner, F. Fritzen, Mech. Mater. 104, 121 (2016) CrossRefGoogle Scholar
  17. 17.
    S. Marfia, E. Sacco, Composites B 136, 241 (2017) CrossRefGoogle Scholar
  18. 18.
    S. Fillep, J. Mergheim, P. Steinmann, Comput. Mech. 59, 385 (2017) MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Caicedo, J.L. Mroginski, S. Toro, M. Raschi, A. Huespe, J. Oliver, Arch. Comput. Methods Eng. 1 (2018) Google Scholar
  20. 20.
    P.R. Budarapu, T. Rabczuk, J. Indian Inst. Sci. 97, 339 (2017) CrossRefGoogle Scholar
  21. 21.
    V. Lucas, J.C. de Golinval, R.C. Voicu, M. Danila, R. Gavrila, R. Müller, A. Dinescu, L. Noels, L. Wu, Int. J. Numer. Methods Eng. 111, 26 (2016) CrossRefGoogle Scholar
  22. 22.
    F. Feyel, Comput. Mater. Sci. 16, 344 (1999) CrossRefGoogle Scholar
  23. 23.
    F. Feyel, Comput. Methods Appl. Mech. Eng. 192, 3233 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    F. Feyel, J.L. Chaboche, Comput. Methods Appl. Mech. Eng. 183, 309 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    V. Kouznetsova, W. Brekelmans, F. Baaijens, Comput. Mech. 27, 37 (2001) CrossRefGoogle Scholar
  26. 26.
    K. Terada, N. Kikuchi, Comput. Methods Appl. Mech. Eng. 190, 5427 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    C. Liu, C. Reina, J. Mech. Phys. Solids 104, 187 (2017) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Alberdi, G. Zhang, K. Khandelwal, Int. J. Numer. Methods Eng. 114, 1018 (2018) CrossRefGoogle Scholar
  29. 29.
    U. Solinc, J. Korelc, Comput. Mech. 56, 905 (2015) MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Schroder, M.A. Keip, Comput. Mech. 50, 229 (2012) MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.A. Keip, P. Steinmann, J. Schroder, Comput. Methods Appl. Mech. Eng. 278, 62 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    E. Polukhov, D. Vallicotti, M.A. Keip, Comput. Methods Appl. Mech. Eng. 337, 165 (2018) ADSCrossRefGoogle Scholar
  33. 33.
    J. Schröder, M. Labusch, A 3D magnetostrictive Preisach model for the simulation of magneto-electric composites on multiple scales, in Lecture Notes in Applied and Computational Mechanics, Multiscale Modeling of Heterogeneous Structures (Springer, 2018), Vol. 86, Chap. 15, pp. 303–327 Google Scholar
  34. 34.
    M. Labusch, et al. An FE2 scheme for magneto-electro-mechanically coupled boundary value problems, in CISM International Centre for Mechanical Sciences, Ferroic Functional Materials, edited by J. Schröder, D.C. Lupascu (2018), Vol. 581, Chap. 5, pp. 227–262 Google Scholar
  35. 35.
    M.A. Keip, M. Rambausek, Int. J. Solids Struct. 121, 1 (2017) CrossRefGoogle Scholar
  36. 36.
    M.J. Zahr, P. Avery, C. Farhat, Int. J. Numer. Methods Eng. 112, 855 (2017) CrossRefGoogle Scholar
  37. 37.
    N.G. Elvin, N. Lajnef, A. Elvin, Smart Mater. Struct. 15, 977 (2006) ADSCrossRefGoogle Scholar
  38. 38.
    M. Rhimi, N. Lajnef, J. Energy Eng. 138, 185 (2012) CrossRefGoogle Scholar
  39. 39.
    M. Peigney, D. Siegert, Smart Mater. Struct. 22, 095019 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    C. Maruccio, G. Quaranta, L. De Lorenzis, G. Monti, Smart Mater. Struct. 25, 085040 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    P. Cahill, A. Mathewson, V. Pakrashi, J. Bridge Eng. 23, 04018056 (2018) CrossRefGoogle Scholar
  42. 42.
    P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Mech. Syst. Signal Process. 106, 265 (2018) ADSCrossRefGoogle Scholar
  43. 43.
    J. Korelc, J. Eng. Comput. 18, 312 (2002) CrossRefGoogle Scholar
  44. 44.
    J. Korelc, Comput. Mech. 44, 631 (2009) MathSciNetCrossRefGoogle Scholar
  45. 45.
    V. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, Comput. Mech. 27, 37 (2001) CrossRefGoogle Scholar
  46. 46.
    M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Comput. Methods Appl. Mech. Eng. 192, 559 (2003) CrossRefGoogle Scholar
  47. 47.
    A. Kefal, C. Maruccio, G. Quaranta, E. Oterkus, Mech. Syst. Signal Process. 121, 890 (2019) ADSCrossRefGoogle Scholar
  48. 48.
    G. Quaranta, F. Trentadue, C. Maruccio, G.C. Marano, Mech. Syst. Signal Process. 104, 134 (2018) ADSCrossRefGoogle Scholar
  49. 49.
    C. Maruccio, G. Quaranta, P. Montegiglio, F. Trentadue, G. Acciani, Shock Vib. 2018, 2054873 (2018) Google Scholar
  50. 50.
    C. Maruccio, L. De Lorenzis, L. Persano, D. Pisignano, Comput. Mech. 55, 983 (2015) MathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Persano, C. Dagdeviren, C. Maruccio, L. De Lorenzis D. Pisignano, Adv. Mater. 26, 7574 (2014) CrossRefGoogle Scholar
  52. 52.
    C. Maruccio, L. De Lorenzis, Fracture and Structural Integrity 8, 49 (2014) Google Scholar
  53. 53.
    S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, J. Appl. Phys. 108, 074903 (2010) ADSCrossRefGoogle Scholar
  54. 54.
    N.G. Elvin, A. Elvin, J. Intell. Mater. Syst. Struct. 23, 1475 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Claudio Maruccio
    • 1
    Email author
  • Giuseppe Quaranta
    • 2
  • Giuseppe Grassi
    • 1
  1. 1.Department of Innovation EngineeringUniversity of SalentoLecceItaly
  2. 2.Department of Structural Engineering and GeotechnicsSapienza University of RomeRomeItaly

Personalised recommendations