Advertisement

Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system

  • Shaobo He
  • Santo BanerjeeEmail author
  • Kehui Sun
Regular Article
  • 35 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

In this paper, we proposed a fractional-order microscopic chaotic system, derived from a set of microscopic chemical reactions. The dynamical properties of the proposed model have been investigated through Lyapunov characteristic exponents, bifurcation, spectral entropy and C0 complexity algorithm. The results show that the system has rich dynamics in derivative order and the system parameter. In addition, multiple coexisting attractors are found in the system by selecting appropriate initial values. Complexity measuring algorithms are developed as an effective tool for the detection of such attractors. The results are effective for the dynamical randomness in the collisional motion of atoms and molecules in fluids to produce the deterministic chemical chaos, even in fractional order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Mukherjee, S.K. Palit, S. Banerjee et al., Physica A 439, 93 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Banerjee, S.K. Palit, S. Mukherjee et al., Chaos 26, 033105 (2016) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Banerjee, P. Saha, A.R. Chowdhury, Chaos 14, 347 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    S. Jeeva Sathya Theesar, P. Balasubramaniam, S. Banerjee, Chaos 22, 013102 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Saha, S. Banerjee, A.R. Chowdhury, Phys. Lett. A 326, 133 (2004) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Banerjee, L. Rondoni, S. Mukhopadhyay, Opt. Commun. 284, 4623 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    S. Banerjee, S. Mukhopadhyay, L. Rondoni, Opt. Lasers Eng. 50, 950 (2012) CrossRefGoogle Scholar
  8. 8.
    H. Natiq, S. Banerjee, S.B. He et al., Chaos Solit. Fract. 114, 506 (2018) ADSCrossRefGoogle Scholar
  9. 9.
    W.H. Liu, K.H. Sun, C.X. Zhu, Opt. Lasers Eng. 84, 26 (2016) CrossRefGoogle Scholar
  10. 10.
    S. Vaidyanathan, A. Akgul, S. Kaçar, Eur. Phys. J. Plus 133, 46 (2018) CrossRefGoogle Scholar
  11. 11.
    J.G. Lu, G.R. Chen, Chaos Solit. Fract. 27, 685 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    S.B. He, K.H. Sun, H.H. Wang, Entropy 17, 8299 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    A. Asgharnia, R. Shahnazi, A. Jamali, ISA Trans. 79, 27 (2018) CrossRefGoogle Scholar
  14. 14.
    D.Y. Chen, R. Zhang, J.C. Sprott, Chaos 70, 1549 (2012) Google Scholar
  15. 15.
    S.B. He, K.H. Sun, H.H. Wang, Eur. Phys. J. Special Topics 225, 97 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Long, Nonlinear Dyn. 65, 103 (2010) Google Scholar
  17. 17.
    A.N. Pisarchik, F. Ulrike, Phys. Rep. 540, 167 (2014) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B.C. Bao, H. Bao, N. Wang, Chaos Solit. Fract. 94, 102 (2017) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C.B. Li, J.C. Sprott, W. Hu, Int. J. Bifurc. Chaos 27, 1750160 (2017) CrossRefGoogle Scholar
  20. 20.
    S. Jafari, A. Ahmadi, A.J.M. Khalaf, Int. J. Electr. Commun. 89, 131 (2018) CrossRefGoogle Scholar
  21. 21.
    V.T. Pham, S. Vaidyanathan, C.K. Volos, Eur. Phys. J. Special Topics 224, 1507 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    M. Shahzad, V.T. Pham, M.A. Ahmad, Eur. Phys. J. Special Topics 224, 1637 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    M.F Danca, Nonlinear Dyn. 86, 1263 (2016) CrossRefGoogle Scholar
  24. 24.
    M.F. Danca, Nonlinear Dyn. 89, 577 (2018) MathSciNetCrossRefGoogle Scholar
  25. 25.
    C.B. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 033108 (2014) Google Scholar
  26. 26.
    L. Gyorgyi, R.J. Field, Nature 355, 808 (1992) ADSCrossRefGoogle Scholar
  27. 27.
    H. Wang, Q. Li, J. Chem. Phys. 108, 7555 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    H.L. Wang, Q.S. Li, J. Phys. Chem. A 104, 472 (2000) CrossRefGoogle Scholar
  29. 29.
    P. Gaspard, Physica A 264, 315 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    W.G. Xu, Q.S. Li, Chaos Solit. Fract. 15, 663 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    M. Berezowski, A. Grabski, Chaos Solit. Fract. 14, 97 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    M. Brøns, J. Sturis, Phys. Rev. E 64, 026209 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Budroni, I. Calabrese, Y. Miele, Phys. Chem. Chem. Phys. 19, 32235 (2017) CrossRefGoogle Scholar
  34. 34.
    N.I. Koltsov, Russ. J. Phys. Chem. B 11, 1047 (2017) CrossRefGoogle Scholar
  35. 35.
    V.K. Yadav, S. Das, B.S. Bhadauria, Chin. J. Phys. 55, 594 (2017) CrossRefGoogle Scholar
  36. 36.
    M.A. Budroni, I. Calabrese, Y. Miele, Phys. Chem. Chem. Phys. 19, 32235 (2017) CrossRefGoogle Scholar
  37. 37.
    H.H. Sun, A. Abdelwahab, B. Onaral, IEEE Trans. Automatic Control 29, 441 (1984) CrossRefGoogle Scholar
  38. 38.
    E.H. Shen, Z.J. Cai, F.J. Gu, J, Appl. Math. Mech. 26, 1188 (2005) CrossRefGoogle Scholar
  39. 39.
    P.A. Phillip, F.L. Chiu, S.J. Nick, Phys. Rev. E 79, 011915 (2009) CrossRefGoogle Scholar
  40. 40.
    A.C. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics (Springer Verlag, Vienna, 1997) Google Scholar
  41. 41.
  42. 42.
    M.F. Danca, M. Fečkan, N.V. Kuznetsov, Nonlinear Dyn. 92, 1061 (2018) CrossRefGoogle Scholar
  43. 43.

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Electronics, Central South UniversityChangshaP.R. China
  2. 2.Institute for Mathematical Research, Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Malaysia-Italy Centre of Excellence for Mathematical Science, Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations