Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1575–1590 | Cite as

A wide-range modeling approach for the thermal conductivity and dielectric function of solid and liquid aluminum

  • Eugen EisfeldEmail author
  • Hans-Rainer Trebin
  • Johannes Roth
Regular Article Topical issue
  • 11 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

This study aims at providing a simple method to obtain the electronic thermal conductivity of aluminum over a wide range of temperatures and densities in the crystalline solid as well as the disordered liquid phase. All calculations are based on first order perturbation theory and the pseudo-potential theory without resorting to ab-initio simulations. Wherever possible, the results are compared to experimental data or quantum molecular dynamics simulations. In addition a straightforward approach is demonstrated to estimate the complex permittivity from the Drude model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bloch, Z. Phys. 59, 208 (1930)ADSCrossRefGoogle Scholar
  2. 2.
    L. Spitzer, R. Härm, Phys. Rev. 89, 977 (1953)ADSCrossRefGoogle Scholar
  3. 3.
    M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    P.L. Silvestrelli, Phys. Rev. B 60, 16382 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)ADSCrossRefGoogle Scholar
  6. 6.
    A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-statistical self-consistent field models (Springer, 2005)Google Scholar
  7. 7.
    P. Fromy, C. Deutsch, G. Maynard, Phys. Plasmas 3, 714 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    N. Mohankumar, A. Natarajan, Phys. Status Solidi B 188, 635 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Hummer, D. Mihalas, ApJ 331, 794 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Ziman, D. Mihalas, Electrons and phonons (Oxford University Press, 1960)Google Scholar
  12. 12.
    N.A. Inogamov, Y.V. Petrov, J. Exp. Theor. Phys. 110, 446 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Y.V. Petrov, N.A. Inogamov, K.P. Migdal, JETP Lett. 97, 20 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J. Bardeen, Phys. Rev. 52, 688 (1937)ADSCrossRefGoogle Scholar
  15. 15.
    A.O.E. Animalu, V. Heine, Philos. Mag. 12, 1249 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Ziman, Proc. R. Soc. London A 318, 401 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    A.O.E. Animalu, Phys. Rev. B 8, 3555 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    J. Lindhard, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 28, 8 (1954)MathSciNetGoogle Scholar
  19. 19.
    J. Hubbard, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 243, 336 (1958)ADSCrossRefGoogle Scholar
  20. 20.
    L. Kleinman, Phys. Rev. 160, 585 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 7385 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Ziman, Philos. Mag. 6, 1013 (1961)ADSCrossRefGoogle Scholar
  23. 23.
    J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    N.W. Ashcroft, J. Lekner, Phys. Rev. 145, 83 (1966)ADSCrossRefGoogle Scholar
  25. 25.
    Y.V. Petrov, N.A. Inogamov, A.V. Mokshin, B.N. Galimzyanov, J. Phys.: Conf. Ser. 946, 12096 (2018)Google Scholar
  26. 26.
    V. Recoules, J.P. Crocombette, Phys. Rev. B 72, 1 (2005)CrossRefGoogle Scholar
  27. 27.
    G.R. Gathers, Int. J. Thermophys. 4, 209 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    Y.T. Lee, R.M. More, Phys. Fluids 27, 1273 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, Appl. Surf. Sci. 258, 9480 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A.E. Turrell, M. Sherlock, S.J. Rose, J. Comput. Phys. 249, 13 (2013)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y.V. Petrov, K.P. Migdal, N.A. Inogamov, S.I. Anisimov, JETP Lett. 104, 431 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    V.I. Mazhukin, Laser pulses-theory, technology, and applications (InTech, 2012)Google Scholar
  33. 33.
    B. Huttner, J. Phys.: Condens. Matter 6, 2459 (1994)ADSGoogle Scholar
  34. 34.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Phys. Rev. E 65, 1 (2002)Google Scholar
  35. 35.
    N.W. Ashcroft, K. Sturm, Phys. Rev. B 3, 1898 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Y.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Colombier, P. Combis, E. Audouard, R. Stoian, Phys. Rev. E 77, 1 (2008)CrossRefGoogle Scholar
  38. 38.
    M.E. Povarnitsyn, D.V. Knyazev, P.R. Levashov, Contrib. Plasma Phys. 52, 145 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    N. Medvedev, Z. Li, V. Tkachenko, B. Ziaja, Phys. Rev. B 95, 014309 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eugen Eisfeld
    • 1
    Email author
  • Hans-Rainer Trebin
    • 1
  • Johannes Roth
    • 1
  1. 1.Institute for Functional Matter and Quantum Technologies, University of StuttgartStuttgartGermany

Personalised recommendations