Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1665–1679 | Cite as

Unfolding of DNA by co-solutes: insights from Kirkwood–Buff integrals and transfer free energies

  • Ewa Anna Oprzeska-Zingrebe
  • Miriam Kohagen
  • Johannes Kästner
  • Jens SmiatekEmail author
Regular Article
  • 19 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Many organic co-solutes are known to stabilize or to destabilize native structures of proteins or DNA. Most of these effects can be explained by co-solute binding or exclusion mechanisms. A beneficial approach to study the underlying principles relies on the computation of Kirkwood–Buff integrals, which can be also used to derive detailed expressions for transfer free energies and changes of the chemical equilibrium between the unfolded and the native states. In this article, we use the framework of Kirkwood–Buff theory in order to study the influence of ectoine on the stability of short DNA hairpins. Our results highlight a strong binding of ectoine, which reveals a pronounced destabilization of DNA in good agreement with experimental findings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Lo Nostro, B.W. Ninham, Chem. Rev. 112, 2286 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Kunz, Specific ion effects (World Scientific, Singapore, 2010)Google Scholar
  3. 3.
    K.D. Collins, Methods 34, 300 (2004)CrossRefGoogle Scholar
  4. 4.
    Y. Marcus, Chem. Rev. 109, 1346 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Salis, B.W. Ninham, Chem. Soc. Rev. 43, 7358 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Smiatek, R.K. Harishchandra, O. Rubner, H.-J. Galla, A. Heuer, Biophys. Chem. 160, 62 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Smiatek, R.K. Harishchandra, H.-J. Galla, A. Heuer, Biophys. Chem. 180, 102 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Smiatek, J. Phys. Chem. B 118, 771 (2014)CrossRefGoogle Scholar
  9. 9.
    M.B. Hahn, T. Solomun, R. Wellhausen, S. Hermann, H. Seitz, S. Meyer, H.-J. Kunte, J. Zeman, F. Uhlig, J. Smiatek, J. Phys. Chem. B 119, 15212 (2015)CrossRefGoogle Scholar
  10. 10.
    M.B. Hahn, F. Uhlig, T. Solomun, J. Smiatek, H. Sturm, Phys. Chem. Chem. Phys. 18, 28398 (2016)CrossRefGoogle Scholar
  11. 11.
    M.A. Schroer, J. Michalowsky, B. Fischer, J. Smiatek, G. Grübel, Phys. Chem. Chem. Phys. 18, 31459 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Marcus, Ions in solution and their solvation (John Wiley & Sons, NY, 2015)Google Scholar
  13. 13.
    E. Courtenay, M. Capp, C. Anderson, M. Record, Biochemistry 39, 4455 (2000)CrossRefGoogle Scholar
  14. 14.
    S.N. Timasheff, Biochemistry 41, 13473 (2002)CrossRefGoogle Scholar
  15. 15.
    S. Shimizu, D.J. Smith, J. Chem. Phys. 121, 1148 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    S. Shimizu, Proc. Natl. Acad. Sci. USA 101, 1195 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S. Shimizu, C.L. Boon, J. Chem. Phys. 121, 9147 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Aburi, P.E. Smith, J. Phys. Chem. B 108, 7382 (2004)CrossRefGoogle Scholar
  19. 19.
    P.E. Smith, Biophys. J. 91, 849 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J. Rösgen, B.M. Pettitt, D.W. Bolen, Biophys. J. 89, 2988 (2005)CrossRefGoogle Scholar
  21. 21.
    P.E. Smith, J. Phys. Chem. B 108, 18716 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Smiatek, J. Phys. Condens. Matter 29, 233001 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Oprzeska-Zingrebe, J. Smiatek, Biophys. Rev. 10, 809 (2018)CrossRefGoogle Scholar
  24. 24.
    V. Pierce, M. Kang, M. Aburi, S. Weerasinghe, P.E. Smith, Cell. Biochem. Biophys. 50, 1 (2008)CrossRefGoogle Scholar
  25. 25.
    E.A. Oprzeska-Zingrebe, J. Smiatek, Biophys. J. 114, 1551 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    P.E. Smith, J. Phys. Chem. B 103, 525 (1999)CrossRefGoogle Scholar
  27. 27.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Ben-Naim, Statistical thermodynamics for chemists and biochemists (Springer Science & Business Media, Berlin, 2013)Google Scholar
  29. 29.
    P.E. Smith, E. Matteoli, J.P. O’Connell, Fluctuation theory of solutions: applications in chemistry, chemical engineering, and biophysics (CRC Press, Boca Raton, 2013)Google Scholar
  30. 30.
    A. Ben-Naim, J. Chem. Phys. 67, 4884 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    T. Kobayashi, J.E. Reid, S. Shimizu, M. Fyta, J. Smiatek, Phys. Chem. Chem. Phys. 19, 18924 (2017)CrossRefGoogle Scholar
  32. 32.
    P.E. Smith, J. Chem. Phys. 129, 124509 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    A.N. Krishnamoorthy, C. Holm, J. Smiatek, J. Phys. Chem. C 122, 10293 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Shimizu, N. Matubayasi, Phys. A 492, 1988 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S.K. Schnell, P. Englebienne, J.-M. Simon, P. Krüger, S.P. Balaji, S. Kjelstrup, D. Bedeaux, A. Bardow, T.J. Vlugt, Chem. Phys. Lett. 582, 154 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J. Milzetti, D. Nayar, N.F. van der Vegt, J. Phys. Chem. B 122, 5515 (2018)CrossRefGoogle Scholar
  37. 37.
    I.L. Shulgin, E. Ruckenstein, J. Phys. Chem. B 112, 14665 (2008)CrossRefGoogle Scholar
  38. 38.
    P.W. Atkins, J. de Paula, Physical chemistry 2010 (Oxford University Press, Oxford)Google Scholar
  39. 39.
    I.L. Shulgin, E. Ruckenstein, J. Chem. Phys. 123, 054909 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    E. Ruckenstein, I.L. Shulgin, Adv. Coll. Interface Sci. 123, 97 (2006)CrossRefGoogle Scholar
  41. 41.
    D.R. Canchi, A.E. Garca, Annu. Rev. Phys. Chem. 64, 273 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    B.M. Baynes, B.L. Trout, J. Phys. Chem. B 107, 14058 (2003)CrossRefGoogle Scholar
  43. 43.
    E.A. Oprzeska-Zingrebe, S. Meyer, A. Roloff, H.-J. Kunte, J. Smiatek, Phys. Chem. Chem. Phys. 20, 25861 (2018)CrossRefGoogle Scholar
  44. 44.
    P. Padrta, R. Štefl, L. Králík, L. Žídek, V. Sklenář, J. Biomol. NMR 24, 1 (2002)CrossRefGoogle Scholar
  45. 45.
    P. Padrta, R. Štefl, L. Žídek, V. Sklenář, RCSB protein data bank ID: 1KR8, http://www.rcsb.org/pdb/explore/explore.do?structureId=1KR8, [Online; accessed 01-October-2018](2002)
  46. 46.
    S. Micciulla, J. Michalowsky, M.A. Schroer, C. Holm, R. von Klitzing, J. Smiatek, Phys. Chem. Chem. Phys. 18, 5324 (2016)CrossRefGoogle Scholar
  47. 47.
    D. Diddens, V. Lesch, A. Heuer, J. Smiatek, Phys. Chem. Chem. Phys. 19, 20430 (2017)CrossRefGoogle Scholar
  48. 48.
    V. Lesch, A. Heuer, V.A. Tatsis, C. Holm, J. Smiatek, Phys. Chem. Chem. Phys. 17, 26049 (2015)CrossRefGoogle Scholar
  49. 49.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)CrossRefGoogle Scholar
  50. 50.
    I. Ivani, P.D. Dans, A. Noy, A. Pérez, I. Faustino, A. Hospital, J. Walther, P. Andrio, R.G. Ni, A. Balaceanu, G. Portella, F. Battistini, J.L. Gelpí, C. González, M. Vendruscolo, C.A. Laughton, S.A. Harris, D.A. Case, M. Orozco, Nature Meth. 13, 55 (2016)CrossRefGoogle Scholar
  51. 51.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157 (2004)CrossRefGoogle Scholar
  53. 53.
    J. Wang, W. Wang, P.A. Kollman, D.A. Case, J. Mol. Graph. Model. 25, 247 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  55. 55.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    A.N. Krishnamoorthy, K. Oldiges, A. Heuer, M. Winter, I. Cekic-Laskovic, C. Holm, J. Smiatek, Phys. Chem. Chem. Phys. 20, 25701 (2018)CrossRefGoogle Scholar
  58. 58.
    T. Janzen, S. Zhang, A. Mialdun, G. Guevara-Carrion, J. Vrabec, M. He, V. Shevtsova, Phys. Chem. Chem. Phys. 19, 31856 (2017)CrossRefGoogle Scholar
  59. 59.
    Sigma Aldrich: Ectoine Product Information, https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/e2271pis.pdf [Online; accessed 01-October-2018](2007)
  60. 60.
    M. Schnoor, P. Voß, P. Cullen, T. Böking, H.-J. Galla, E.A. Galinski, S. Lorkowski, Biochem. Biophys. Res. Commun. 322, 867 (2004)CrossRefGoogle Scholar
  61. 61.
    S. Patra, C. Anders, N. Erwin, R. Winter, Angew. Chem. Int. Ed. 129, 5127 (2017)CrossRefGoogle Scholar
  62. 62.
    S. Patra, C. Anders, P.H. Schummel, R. Winter, Phys. Chem. Chem. Phys. 20, 13159 (2018)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Computational Physics, University of StuttgartStuttgartGermany
  2. 2.Institute for Theoretical Chemistry, University of StuttgartStuttgartGermany
  3. 3.Helmholtz Institute Münster (HI MS – IEK 12): Ionics in Energy Storage, Forschungszentrum Jülich GmbHMünsterGermany

Personalised recommendations