The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1603–1614 | Cite as

High-order Particle-In-Cell simulations of laser-plasma interaction

  • Stephen M. CopplestoneEmail author
  • Marcel Pfeiffer
  • Stefanos Fasoulas
  • Claus-Dieter Munz
Regular Article
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering


The simulation of laser-plasma interaction via three- dimensional Particle-In-Cell methods based on higher-order schemes is considered. High-order methods allow for drastically reducing the required number of degrees of freedom while still capturing the complex physical nature of non-linear processes. The suitability of high-order methods for the acceleration of protons from thin films by intense short-pulse lasers in terms of accuracy and efficiency is shown.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    M. Nishiuchi, H. Sakaki, T.Z. Esirkepov, K. Nishio, T. Pikuz, A.Y. Faenov, I.Y. Skobelev, R. Orlandi, H. Sako, A. Pirozhkov, et al. , Phys. Plasmas 22, 033107 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M. King, R. Gray, H. Powell, R. Capdessus, P. McKenna, Plasma Phys. Controlled Fusion 59, 014003 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    J. Schreiber, P. Bolton, K. Parodi, Rev. Sci. Instrum. 87, 071101 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    E. d’Humières, A. Brantov, V.Yu. Bychenkov, V. Tikhonchuk, Phys. Plasmas 20, 023103 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Brantov, V.Y. Bychenkov, Plasma Phys. Controlled Fusion 59, 034009 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    A. Brantov, P. Ksenofontov, V.Y. Bychenkov, in 2015 IEEE International Conference on Plasma Sciences (ICOPS) (IEEE, 2015), pp. 1–1Google Scholar
  9. 9.
    S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington, A. MacKinnon, R. Snavely, Phys. Plasmas 8, 542 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    G. Petrov, C. McGuffey, A. Thomas, K. Krushelnick, F. Beg, Plasma Phys. Controlled Fusion 59, 075003 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    C.K. Birdsall, A.B. Langdon, Plasma physics via computer simulation (Hilger, Bristol, 1991)Google Scholar
  12. 12.
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles (Taylor & Francis, 1988)Google Scholar
  13. 13.
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, et al. , Plasma Phys. Controlled Fusion 57, 113001 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    K.S. Yee, IEEE Trans. Antennas and Propagation (1966), pp. 302–307Google Scholar
  15. 15.
    J.P. Boris, Proc. 4th Conf. Num. Sim. Plasmas (1970), pp. 3–67Google Scholar
  16. 16.
    G.B. Jacobs, J.S. Hesthaven, J. Comput. Phys. 214, 96 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C.-D. Munz, M. Auweter-Kurtz, S. Fasoulas, A. Mirza, P. Ortwein, M. Pfeiffer, T. Stindl, C.R. Mec. 342, 662 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, NY, 1999)Google Scholar
  19. 19.
    M.H. Carpenter, C.A. Kennedy, NASA technical memorandum 109112 (1994), pp. 1–26Google Scholar
  20. 20.
    J. Hesthaven, T. Warburton, Texts in applied mathematics (Springer, 2008)Google Scholar
  21. 21.
    S.M. Copplestone, P. Ortwein, C.D. Munz, IEEE Trans. Plasma Sci. 45, 2 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    C.-D. Munz, P. Ommes, R. Schneider, Comput. Phys. Commun. 130, 83 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, J. Comput. Phys. 161, 484 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Stock, J. Neudorfer, M. Riedlinger, G. Pirrung, G. Gassner, R. Schneider, S. Roller, C.-D. Munz, IEEE Trans. Plasma Sci. 40, 1860 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    P. Ortwein, T. Binder, S. Copplestone, A. Mirza, P. Nizenkov, M. Pfeiffer, C.-D. Munz, S. Fasoulas, arXiv:1811.05152 (2018)
  26. 26.
    T. Binder, S. Copplestone, A. Mirza, P. Nizenkov, P. Ortwein, M. Pfeiffer, W. Reschke, C.-D. Munz, S. Fasoulas, arXiv:1811.04742 (2018)
  27. 27.
    C. Müller, Grundlehren der mathematischen Wissenschaften (Springer-Verlag, 1969)Google Scholar
  28. 28.
    G. Gassner, D.A. Kopriva, SIAM J. Sci. Comput. 33, 2560 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.Q. Yu, W.J. Ma, C. Lin, X.Q. Yan, Plasma Phys. Controlled Fusion 60, 115007 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    S. Sonntag, C. Trichet Paredes, J. Roth, H.-R. Trebin, Appl. Phys. A 104, 559 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Roth, C. Trichet, H.-R. Trebin, S. Sonntag, in High Performance Computing in Science and Engineering ‘10: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2010, edited by W.E. Nagel, D.B. Kröner, M.M. Resch(Springer, Berlin, Heidelberg, 2011), pp. 159–168Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Gas Dynamics, University of StuttgartStuttgartGermany
  2. 2.Institute of Space Systems, University of StuttgartStuttgartGermany

Personalised recommendations