The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1589–1604 | Cite as

Piezoceramic patches for energy harvesting and sensing purposes

  • Z. HadasEmail author
  • F. Ksica
  • O. Rubes
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications


This paper deals with a design, modelling, simulation, and test of vibrating mechanical cantilever with bonded piezoelectric patches for energy harvesting and sensing purposes. An experimental flexible structure was designed and piezoceramic patches were placed originally as energy harvesting devices. Furthermore, additional sensing functionality of piezoceramic patches is investigated in this paper. Such piezoceramic patches are integrated in the cantilever design and they could represent, for example, smart layers of an advanced aircraft structure. The design and position of the piezoceramic patches were analysed in the ANSYS environment. The finite element model was used to predict output voltage and power for varied vibration modes. This proposed design of the cantilever with piezoceramic patches was tested in laboratory conditions, and voltage response for varied mechanical excitation was measured and analysed for both energy harvesting and sensing purposes. Proposed paper will also present an example of practical usage of the tested design for impact detection. It could be mainly used in structural monitoring systems or health and usage systems in aircraft applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Churchill, T. Frattini, S. DiStasi, D.M. Wells, in 40th European Rotorcraft Forum 2014 (2014), Vol. 2 Google Scholar
  2. 2.
    P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Mech. Syst. Signal Process. 106, 265 (2018) ADSCrossRefGoogle Scholar
  3. 3.
    M.Q. Le, J.F. Capsal, M. Lallart, Y. Hebrard, A. Van Der Ham, N. Reffe, L. Geynet, P.J. Cottinet, Prog. Aerosp. Sci. 79, 147 (2015) CrossRefGoogle Scholar
  4. 4.
    Z. Hadas, V. Vetiska, R. Huzlik, V. Singule, Microsyst. Technol. 20, 831 (2014) CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, S.C. Cai, L. Deng, J. Intell. Mater. Syst. Struct. 25, 1414 (2014) CrossRefGoogle Scholar
  6. 6.
    K. Shahzad, M. Onils, in 2018 Workshop on Metrology for Industry 4.0 and IoT (IEEE, 2018), p. 101 Google Scholar
  7. 7.
    Y. Bai, P. Tofel, Z. Hadas, J. Smilek, P. Losak, P. Skarvada, R. Macku, Mech. Syst. Signal Process. 106, 303 (2018) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Hadas, C. Ondrusek, Eur. Phys. J. Special Topics 224, 2881 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Hadas, C. Ondrusek, V. Singule, Microsyst. Technol. 16, 691 (2010) CrossRefGoogle Scholar
  10. 10.
    Z. Hadas, V. Vetiska, J. Vetiska, J. Krejsa, Microsyst. Technol. 22, 1767 (2016) CrossRefGoogle Scholar
  11. 11.
    A. Khaligh, P. Zeng, C. Zheng, IEEE Trans. Ind. Electron. 57, 850 (2010) CrossRefGoogle Scholar
  12. 12.
    C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014) CrossRefGoogle Scholar
  13. 13.
    X. Tang, X. Wang, R. Cattley, F. Gu, A. Ball, Sensors 18, 4113 (2018) CrossRefGoogle Scholar
  14. 14.
    C. Arcadius Tokognon, B. Gao, G.Y. Tian, Y. Yan, IEEE Internet Things J. 4, 619 (2017) CrossRefGoogle Scholar
  15. 15.
    N. Kaur, S. Bhalla, J. Energy Eng. 141, D4014001 (2015) CrossRefGoogle Scholar
  16. 16.
    D. Maurya, P. Kumar, S. Khaleghian, R. Sriramdas, M.G. Kang, R.A. Kishore, V. Kumar, H.-C. Song, J.-M. (Jerry) Park, S. Taheri, S. Priya, Appl. Energy 232, 312 (2018) CrossRefGoogle Scholar
  17. 17.
    F. Ksica, Z. Hadas, J. Hlinka, in 2018 5th IEEE International Workshop on Metrology for AeroSpace (2018) Google Scholar
  18. 18.
    Z. Hadas, F. Ksica, in Proc. 16th Int. Conf. Mechatronics – Mechatronika 2014 (IEEE, 2014), p. 393 Google Scholar
  19. 19.
    M. Borowiec, Eur. Phys. J. Special Topics 224, 2771 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    D.X. Cao, S. Leadenham, A. Erturk, Eur. Phys. J. Special Topics 224, 2867 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    D.N. Betts, C.R. Bowen, H.A. Kim, N. Gathercole, C.T. Clarke, D.J. Inman, Eur. Phys. J. Special Topics 222, 1553 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    Z. Hadas, L. Janak, J. Smilek, Mech. Syst. Signal Process. 110, 152 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    IEEE Standard on Piezoelectricity, in ANSI/IEEE Std 176-1987 (IEEE, 1988), p. 74 Google Scholar
  24. 24.
    A.K. Batra, A. Alomari, Power Harvesting via Smart Materials (SPIE Press, 2017) Google Scholar
  25. 25.
    S. Lee, B.D. Youn, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 629 (2011) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations