Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1635–1646 | Cite as

Experimental validation of an impact off-resonance energy harvester

  • G. Martinez-Ayuso
  • M. I. FriswellEmail author
  • H. Haddad Khodaparast
  • S. Adhikari
Open Access
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications

Abstract

Most piezoelectric energy harvesting research has focused on developing on-resonance harvesters that work at low frequencies, even though higher frequencies can generate more power. In addition, conventional resonant harvesters have low efficiency when the excitation frequency is away from resonance. Using mechanical impacts has the potential to improve the overall harvested energy since high frequencies are excited during impacts. Also, the presence of impacts reduces the influence of the base excitation frequency and the requirement to exactly match the resonance frequency. To take advantage of the higher frequency response, an impact energy harvester is designed and validated experimentally. The harvester consists of a cantilever beam with a piezoelectric patch attached to its base which impacts with a stiff object. The harvester is modelled using finite element analysis and a Hertzian contact law. The model is tested and validated in the laboratory using an in-house manufactured demonstrator. Good agreement with the experimental data is obtained, setting the basis for future optimisation of the harvester geometry and piezoelectric properties.

References

  1. 1.
    A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    S. Adhikari, M.I. Friswell, D.J. Inman, Smart Mater. Struct. 18, 115005 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    S. Kim, W.W. Clark, Q.-M. Wang, J. Intell. Mater. Syst. Struct. 16, 847 (2005) CrossRefGoogle Scholar
  4. 4.
    S. Kim, W.W. Clark, Q.-M. Wang, J. Intell. Mater. Syst. Struct. 16, 855 (2005) CrossRefGoogle Scholar
  5. 5.
    B. Cavallier, P. Berthelot, H. Nouira, E. Foltete, L. Hirsinger, S. Ballandras, IEEE Ultrasonics Symposium 2, 943 (2005) Google Scholar
  6. 6.
    M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 35, 3267 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    M. Renaud, P. Fiorini, C. Van Hoof, Smart Mater. Struct. 16, 1125 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    E. Jacquelin, S. Adhikari, M.I. Friswell, Smart Mater. Struct. 20, 105008 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    W.J. Stronge, Impact Mechanics (Cambridge University Press, 2004) Google Scholar
  10. 10.
    L. Gu, C. Livermore, Smart Mater. Struct. 20, 045004 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    K. Vijayan, M.I. Friswell, H.H. Khodaparast, S. Adhikari, Int. J. Mech. Sci. 96, 101 (2015) CrossRefGoogle Scholar
  12. 12.
    G. Martínez-Ayuso, M.I. Friswell, S. Adhikari, H. Haddad Khodaparast, C.A. Featherston, Procedia Eng. 199, 3468 (2017) CrossRefGoogle Scholar
  13. 13.
    E.F. Crawley, J. de Luis, AIAA J. 25, 1373 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    E.F. Crawley, E.H. Anderson, J. Intell. Mater. Syst. Struct. 1, 4 (1990) CrossRefGoogle Scholar
  15. 15.
    C. Park, C. Walz, I. Chopra, Smart Mater. Struct. 5, 98 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    O. Bilgen, A. Erturk, D.J. Inman, J. Vib. Acoust. 132, 051005 (2010) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • G. Martinez-Ayuso
    • 1
  • M. I. Friswell
    • 1
    Email author
  • H. Haddad Khodaparast
    • 1
  • S. Adhikari
    • 1
  1. 1.College of Engineering, Swansea University, Bay CampusSwanseaUK

Personalised recommendations