Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1559–1574 | Cite as

Precipitation, planar defects and dislocations in alloys: Simulations on Ni3Si and Ni3Al precipitates

  • Stephen HockerEmail author
  • Hansjörg Lipp
  • Siegfried Schmauder
Regular Article
  • 7 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

We present simulations of the formation of Ni3Si precipitates using a combination of molecular dynamics (MD) and the Metropolis Monte Carlo (MMC) method. Applying this technique to a Ni-Si solid solution in Cu matrix leads to Ni3Si precipitates with L12 structure as observed in experiments. Since L12 structured precipitates are most relevant for precipitation strengthening of several alloys, we focus on planar defects and dislocations in Ni3Si and Ni3Al. Ab initio calculations of the generalised stacking fault energies of Ni3Si presented in our previous work [S. Hocker, H. Lipp, E. Eisfeld, S. Schmauder, J. Roth, J. Chem. Phys. 149, 024701 (2018)] revealed that the complex stacking fault is not stable and the inflection point as well as the minimum corresponding to the antiphase boundary is shifted. In this study it is shown that this behaviour can be understood from the analysis of charge densities. Furthermore, the consequences on dislocations in Ni3Si and Ni3Al are discussed and interactions of edge dislocations with Ni3Si and Ni3Al precipitates are simulated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hocker, H. Lipp, E. Eisfeld, S. Schmauder, J. Roth, J. Chem. Phys. 149, 024701 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    F. Soisson, A. Barbu, G. Martin, Acta Mater. 44, 3789 (1996)CrossRefGoogle Scholar
  3. 3.
    S. Hocker, P. Binkele, S. Schmauder, Appl. Phys. A 115, 679 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    F. De Geuser, B.M. Gable, B.C. Muddle, Philos. Mag. 91, 315 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Sajadi, S. Hocker, A. Mora, P. Binkele, J. Seeger, S. Schmauder, Phys. Status Solidi B 254, 1600407 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    J.Y. Cheng, B.B. Tang, F.X. Yu, B. Shen, J. Alloys Compd. 614, 189 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, Y.L. Jia, Mater. Sci. Eng. A 527, 6728 (2010)CrossRefGoogle Scholar
  8. 8.
    S.A. Lockyer, F.W. Noble, J. Mater. Sci. 29, 218 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, Z. Xiao, Intermetallics 42, 77 (2013)CrossRefGoogle Scholar
  10. 10.
    Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J.M. Xie, W.W. Yang, D.L. Chen, Mater. Sci. Eng. A 572, 65 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 323, 268 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    C. Kohler, P. Kizler, S. Schmauder, Mater. Sci. Eng. A 400, 481 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Hocker, D. Rapp, S. Schmauder, Phys. Status Solidi B 254, 1600479 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J. Stadler, R. Mikulla, H.-R. Trebin, Int. J. Mod. Phys. C 8, 1131 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J. Roth, F. Gähler, H.-R. Trebin, Int. J. Mod. Phys. C 11, 317 (2000)ADSGoogle Scholar
  16. 16.
    O.N. Mryasov, Y.N. Gornostyrev, M. van Schilfgaarde, A.J. Freeman, Acta Mater. 50, 4545 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Hou, Z. Wen, Y. Zhao, L. Fu, N. Wang, P. Han, Intermetallics 44, 110 (2014)CrossRefGoogle Scholar
  18. 18.
    N.S. Stoloff, Int. Mater. Rev. 34, 153 (1989)CrossRefGoogle Scholar
  19. 19.
    M.J. Mills, The flow strength anomaly in metals and intermetallic compounds (Dordrecht, Springer Netherlands, 2000), pp. 469–478Google Scholar
  20. 20.
    V. Vitek, V. Paidar, Chapter 87 – non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, in A tribute to F.R.N. Nabarro, volume 14 of dislocations in solids, edited by J.P. Hirth (Elsevier, 2008), pp. 439–514Google Scholar
  21. 21.
    Y.M. Wang-Koh, Mater. Sci. Technol. 33, 934 (2017)CrossRefGoogle Scholar
  22. 22.
    H.M. Tawancy, N.M. Abbas, A.I. Al-Mana, T.N. Rhys-Jones, J. Mater. Sci. 29, 2445 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  24. 24.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
  26. 26.
    A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Kokalj, Comput. Math. Sci. 28, 155 (2003)CrossRefGoogle Scholar
  35. 35.
    P.L. Williams, Y. Mishin, J.C. Hamilton, Model. Simul. Mater. Sci. Eng. 14, 817 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    M.I. Mendelev, M. Asta, M.J. Rahman, J.J. Hoyt, Philos. Mag. 89, 3269 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Miyazawa, T. Fujii, S. Onaka, M. Kato, J. Mater. Sci 46, 4228 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Chen, T.S. Sun, R.K. Viswanadham, J.A.S. Green, Metall. Trans. A 8, 1935 (1977)CrossRefGoogle Scholar
  39. 39.
    Y. Mishin, Acta Mater. 52, 1451 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stephen Hocker
    • 1
    Email author
  • Hansjörg Lipp
    • 1
  • Siegfried Schmauder
    • 1
  1. 1.Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF), Universität StuttgartStuttgartGermany

Personalised recommendations