Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1575–1588 | Cite as

Novel layered architecture based on Al2O3/ZrO2/BaTiO3 for SMART piezoceramic electromechanical converters

  • P. TofelEmail author
  • Z. Machu
  • Z. Chlup
  • H. Hadraba
  • D. Drdlik
  • O. Sevecek
  • Z. Majer
  • V. Holcman
  • Z. Hadas
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications

Abstract

The paper is focused on a very hot topic of SMART materials and their architectures for energy conversion systems designed for conversion of mechanical to electrical energy using the piezoelectric effect. The aim of the study is to increase both the reliability and efficiency of electromechanical conversion compared to standard concepts. Our new design of piezoelectric cantilever is made with multi-layer ceramic composite, where piezoelectric layer BaTiO3 is covered by protective ceramics layers of different residual stresses, where Al2O3 and ZrO2 is used. Utilization of controlled residual stresses into new multi-layer architecture is the key idea and it is crucial for optimal design of the individual layers of the proposed concept. The multi-layer ceramic composite is fabricated by electrophoretic deposition, where the composite is assembled from different ceramic materials during processing and after sintering we get inseparable ceramic laminate consisting of piezoelectric and protective layers of ceramics. This approach of processing multi-layer ceramic material including lead free piezoelectric layers is innovative and has never been published before.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Yi, W.Y. Shih, W.-H. Shih, J. Appl. Phys. 91, 1680 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Bai, P. Tofel, Z. Hadas et al., Mech. Syst. Signal Process. 106, 303 (2018) ADSCrossRefGoogle Scholar
  3. 3.
    H.-C. Song, H.-C. Kim, C.-Y. Kang et al., J. Electroceram. 23, 301 (2009) CrossRefGoogle Scholar
  4. 4.
    K. Tungpimolrut, N. Hatti, J. Phontip et al., in 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (IEEE, 2011), p. 1 Google Scholar
  5. 5.
    Y. Wang, W. Chen, P. Guzman, J. Intell. Mater. Syst. Struct. 27, 2324 (2016) CrossRefGoogle Scholar
  6. 6.
    M. Zielinski, F. Mieyeville, D. Navarro, O. Bareille, in Federated Conference on Computer Science and Information Systems, 2014, (IEEE, 2014), p. 1065 Google Scholar
  7. 7.
    Y. Bai, Z. Havránek, P. Tofel et al., Eur. Phys. J. Special Topics 224, 2675 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    O. Rubes, M. Brablc, Z. Hadas, Mech. Syst. Signal Process. 125, 170 (2019) ADSCrossRefGoogle Scholar
  9. 9.
    T.-Y. Zhang, M. Zhao, P. Tong, Adv. Appl. Mech. 38, 147 (2002) CrossRefGoogle Scholar
  10. 10.
    H. Hadraba, D. Drdlik, Z. Chlup et al., J. Eur. Ceram. Soc. 32, 2053 (2012) CrossRefGoogle Scholar
  11. 11.
    H. Hadraba, Z. Chlup, D. Drdlik, J. Cihlar, J. Eur. Ceram. Soc. 36, 365 (2016) CrossRefGoogle Scholar
  12. 12.
    Z. Chlup, H. Hadraba, L. Slabáková et al., J. Eur. Ceram. Soc. 32, 2057 (2012) CrossRefGoogle Scholar
  13. 13.
    L. Sestakova, R. Bermejo, Z. Chlup, R. Danzer, Int. J. Mater. Res. 102, 613 (2011) CrossRefGoogle Scholar
  14. 14.
    P. Parente, Y. Ortega, B. Savoini et al., Acta. Mater. 58, 3014 (2010) CrossRefGoogle Scholar
  15. 15.
    M. Mehrali, H. Wakily, I.H.S.C. Metselaar, Adv. Appl. Ceram. 110, 35 (2011) CrossRefGoogle Scholar
  16. 16.
    K. Castkova, K. Maca, J. Cihlar et al., J. Am. Ceram. Soc. 98, 2373 (2015) CrossRefGoogle Scholar
  17. 17.
    Y. Jiang, T. Thongchai, Y. Bai et al., in IEEE International Ultrasonics Symposium, IUS (2014) Google Scholar
  18. 18.
    Y. Bai, A. Matousek, P. Tofel et al., J. Eur. Ceram. Soc. 35, 3445 (2015) CrossRefGoogle Scholar
  19. 19.
    V. Bijalwan, P. Tofel, V. Holcman, J. Asian. Ceram. Soc. 6, 384 (2018) CrossRefGoogle Scholar
  20. 20.
    Y. Bai, P. Tofel, J. Palosaari et al., Adv. Mater. 29, 1700767 (2017) CrossRefGoogle Scholar
  21. 21.
    Y. Huan, X. Wang, J. Fang, L. Li, J. Am. Ceram. Soc. 96, 3369 (2013) CrossRefGoogle Scholar
  22. 22.
    Y. Huan, X. Wang, J. Fang, L. Li, J. Eur. Ceram. Soc. 34, 1445 (2014) CrossRefGoogle Scholar
  23. 23.
    J.C. Wang, P. Zheng, R.Q. Yin et al., Ceram. Int. 41, 14165 (2015) CrossRefGoogle Scholar
  24. 24.
    Y. Wu, J. Zhang, Y. Tan, P. Zheng, Ceram. Int. 42, 9815 (2016) CrossRefGoogle Scholar
  25. 25.
    L. Cheng, M. Sun, F. Ye et al., Int. J. Light. Mater. Manuf. 1, 126 (2018) Google Scholar
  26. 26.
    K. Maca, H. Hadraba, J. Cihlar, Ceram. Int. 30, 843 (2004) Google Scholar
  27. 27.
    H. Hadraba, K. Maca, J. Cihlar, Ceram. Int. 30, 853 (2004) Google Scholar
  28. 28.
    H. Hadraba, D. Drdlik, Z. Chlup et al., J. Eur. Ceram. Soc. 33, 2305 (2013) CrossRefGoogle Scholar
  29. 29.
    D. Benasciutti, L. Moro, S. Zelenika, E. Brusa, Microsyst. Technol. 16, 657 (2010) CrossRefGoogle Scholar
  30. 30.
    Z. Hadas, L. Janak, J. Smilek, Mech. Syst. Signal. Process. 110, 152 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014) CrossRefGoogle Scholar
  32. 32.
    T. Fett, D. Munz, Stress intensity factors and weight functions (Computational Mechanics Publications, Southampton, UK, Boston, MA, USA, 1997) Google Scholar
  33. 33.
    H.F. Bueckner, Novel Principle for the Computation of Stress Intensity Factors (Akademie-Verlag GmbH, Berlin, 1970) Google Scholar
  34. 34.
    M. Lugovy, V. Slyunyayev, N. Orlovskaya et al., Acta. Mater. 53, 289 (2005) CrossRefGoogle Scholar
  35. 35.
    T. Fett, D. Munz, Y.Y. Yang, Eng. Fract. Mech. 65, 393 (2000) CrossRefGoogle Scholar
  36. 36.
    L. Besra, M. Liu, Prog. Mater. Sci. 52, 1 (2007) CrossRefGoogle Scholar
  37. 37.
    N. Sato, M. Kawachi, K. Noto et al., Physica C 357, 1019 (2001) ADSCrossRefGoogle Scholar
  38. 38.
    P.Z. Cai, D.J. Green, G.L. Messing, J. Am. Ceram. Soc. 80, 1929 (2005) CrossRefGoogle Scholar
  39. 39.
    K. Maca, V. Pouchly, D. Drdlik et al., J. Eur. Ceram. Soc. 37, 4287 (2017) CrossRefGoogle Scholar
  40. 40.
    L.-F. Zhu, B.-P. Zhang, J.-Q. Duan et al., J. Eur. Ceram. Soc. 38, 3463 (2018) CrossRefGoogle Scholar
  41. 41.
    S.J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier Science, 2004) Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Tofel
    • 1
    Email author
  • Z. Machu
    • 2
  • Z. Chlup
    • 3
  • H. Hadraba
    • 3
  • D. Drdlik
    • 2
    • 4
  • O. Sevecek
    • 2
  • Z. Majer
    • 2
  • V. Holcman
    • 1
  • Z. Hadas
    • 2
  1. 1.Faculty of Electrical Engineering and Communication, Brno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Mechanical Engineering, Brno University of TechnologyBrnoCzech Republic
  3. 3.CEITEC IPM, Institute of Physics of Materials of the Academy of Sciences of the Czech RepublicBrnoCzech Republic
  4. 4.CEITEC BUT, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations