The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1659–1675 | Cite as

Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors

  • F. Okosun
  • P. Cahill
  • B. Hazra
  • V. PakrashiEmail author
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications


While access to potable water remain one of the grand challenges of the modern world, water distribution pipelines continue to degrade globally and pose a problem in overcoming this challenge. There is a need for data-driven decision-making in relation to identifying structurally degraded pipelines, typically used in water distribution, through monitoring and subsequent assessment in a smart manner. This explains the growing attention the area of leak and damage detection in water pipes. This paper presents the conception, development and experimental validation of a novel technology for leak detection in water pipes using sensors made from piezoelectric materials that converts strain from vibration into electrical energy. These monitors are self-powered and hence has the potential to be deployed more easily than those requiring external power to run. The paper details the fabrication and characterization of the sensors, the experimental design which details the design of a benchmark test rig developed and the test procedure to ensure repeatability. The paper subsequently demonstrates how harvested energy signatures are aligned to the location and extent of damage in the pipe by experimentally introducing leakage in the pipe. It presents the results from tests conducted to validate the idea. The conclusions and recommendations provide insights and directions into more extensive applications for these types of sensors for monitoring of our built infrastructure. It is expected that this paper will form an experimental benchmark for future work on this topic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yazdekhasti, K.R. Piratla, S. Atamturktur, A.A. Khan, Struct. Infrastruct. Eng. 14, 46 (2018) CrossRefGoogle Scholar
  2. 2.
    J. Choi, J. Shin, C. Song, S. Han, D. Park II, Sensors (Basel) 17, 1 (2017) Google Scholar
  3. 3.
    A. Martini, M. Troncossi, A. Rivola, Shock Vib. 13, 165304 (2015) Google Scholar
  4. 4.
    A. Rytter, Vibration based inspection of Civil Engineering structures. Ph.D. Thesis, Department of Building Technology and Structural Engineering, University of Aalborg, Denmark, 1993 Google Scholar
  5. 5.
    P. Cahill, V. Pakrashi, P. Sun, A. Matthewson, Smart Struct. Syst. 21, 287 (2018) Google Scholar
  6. 6.
    A.S. Tijsseling, J. Fluid. Struct. 10, 109 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    S. Li, B.W. Karney, G. Liu, J. Fluid. Struct. 57, 277 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Hellum, R. Mukherjee, A.J. Hull, J. Fluid. Struct. 26, 804 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    G. Liu, Y. Li, J. Sound Vib. 330, 3166 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    L. Baohui, G. Hangshan, L. Yongshou, Y. Zhufeng, Results Phys. 2, 104 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    M. Kheiri, M.P. Païdoussis, G. Costa Del Pozo, M. Amabili, J. Fluid. Struct. 49, 360 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    Z.-M. Wang, S.K. Eat Tan, J. Hydraul. Res. 35, 119 (1997) CrossRefGoogle Scholar
  13. 13.
    G. Li, Y. Gu, Z. Wu, H. Xiao, J. Kong, G. Jiang, L. Xie, L. Hu, S. Xu, Sensors & Transducers 16, 197 (2012) Google Scholar
  14. 14.
    M.T. Pittard, R.P. Evans, R.D. Maynes, J.D. Blotter, Rev. Sci. Instrum. 75, 2393 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    A. Mostafapour, S. Davoodi, Appl. Acoust. 87, 1 (2015) CrossRefGoogle Scholar
  16. 16.
    G. He, Y. Liang, Y. Li, M. Wu, L. Sun, C. Xie, F. Li, J. Hazard. Mater. 332, 19 (2017) CrossRefGoogle Scholar
  17. 17.
    G. Dinardo, L. Fabbiano, G. Vacca, A. Lay-Ekuakille, Measurement (IMEKO) 113, 196 (2018) CrossRefGoogle Scholar
  18. 18.
    S. Yazdekhasti, K.R. Piratla, S. Atamturktur, A.A. Khan, Struct. Infrastruct. Eng. 13, 731 (2017) CrossRefGoogle Scholar
  19. 19.
    S. Beskhyroun, L.D. Wegner, B.F. Sparling, Struct. Control Health 19, 88 (2011) Google Scholar
  20. 20.
    F. Akhtar, M.H. Rehmani, Renew. Sust. Energ. Rev. 45, 769 (2015) CrossRefGoogle Scholar
  21. 21.
    A. Erturk, J. Intell. Mater. Syst. Struct. 22, 1959 (2011) CrossRefGoogle Scholar
  22. 22.
    H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong, L. Wang, D. Chen, B.-C. Cai, Y. Liu, Microelectron. J. 37, 1280 (2006) CrossRefGoogle Scholar
  23. 23.
    Y.B. Jeon, R. Sood, J. Jeong, S.-G. Kim, Sens. Actuators A 122, 16 (2005) CrossRefGoogle Scholar
  24. 24.
    F. Okosun, V. Pakrashi, The potential of energy harvesting for monitoring corroding metal pipes, in The Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ghent, Belgium, 2018, edited by R. Caspeele, L. Taerwe, D.M. Frangopol (CRC Press, Taylor & Francis Group, London, 2018), p. 2093 Google Scholar
  25. 25.
    L. Dhakar, in Triboelectric Devices for Power Generation and Self-Powered Sensing Applications (Springer, Singapore, 2017), p. 10 Google Scholar
  26. 26.
    S. Lee, B.D. Youn, B.C. Jung, Smart Mater. Struct. 18, 95021 (2009) CrossRefGoogle Scholar
  27. 27.
    J. Sirohi, I. Chopra, J. Intell. Mater. Syst. Struct. 11, 246 (2000) CrossRefGoogle Scholar
  28. 28.
    IEEE Standard on Piezoelectricity, ANSI/IEEE std. 176–1987, 1988 Google Scholar
  29. 29.
    L. Zuo, X. Tang, J. Intell. Mater. Syst. Struct. 24, 1405 (2013) CrossRefGoogle Scholar
  30. 30.
    O. Guillon, F. Thiebaud, D. Perreux, C. Courtois, P. Champagne, J. Crampon, J. Eur. Ceram. Soc. 25, 2421 (2005) CrossRefGoogle Scholar
  31. 31.
    A. Vinogradov, F. Holloway, Ferroelectrics 226, 169 (1999) CrossRefGoogle Scholar
  32. 32.
    Y.G. Jiang, S. Shiono, H. Hamada, T. Fujita, K. Higuchi, K. Maenaka, Low-frequency energy harvesting using a laminated PVDF cantilever with a magnetic mass, in The 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Leuven, Belgium, 2010, in Proc. Power MEMS, edited by D. Reynaerts, C.V. Hoof (IoP Publishing, Bristol, England), p. 375 Google Scholar
  33. 33.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Mech. Syst. Signal Process. 106, 265 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    S. Sattarzadeh Shirvan Experimental study of complex pipe flows. Masters Thesis, Royal Institute of Technology KTH, Stockholm, Sweden, 2011 Google Scholar
  36. 36.
    A. Brandt, Noise and Vibration Analysis: Signal Analysis and Experimental Procedures (John Wiley and Sons, Inc., West Sussex, UK, 2011) Google Scholar
  37. 37.
    S. Manikandan, J. Pharmacol. Pharmacother. 2, 214 (2011) CrossRefGoogle Scholar
  38. 38.
    K. Worden, C.R. Farrar, G. Manson, G. Park, Proc. R. Soc. A: Math. Phys. 463, 1639 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    C.H. Tian, J.C. Yan, J. Huang, Y. Wang, D.-S. Kim, T. Yi, in Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, Suzhuo, China 2012 (IEEE, United States, 2012), p. 372 Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dynamical Systems and Risk Laboratory, School of Mechanical and Materials Engineering, and Marine and Renewable Energy Ireland (MaREI), University College DublinDublinIreland
  2. 2.Department of Civil EngineeringIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations