Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 14, pp 1657–1664 | Cite as

Copper coordination in formylglycine generating enzymes

  • Sonia Álvarez-Barcia
  • Johannes Kästner
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Particle Methods in Natural Science and Engineering

Abstract

Formylglycine generating enzyme is a copper and oxygen-dependent protein, which catalyzes C–H activation, namely the transformation of peptidyl cysteine to formylglycine. No crystal structures of the enzyme containing copper were published so far. Here, we show by combinations of density functional theory with force fields in the QM/MM approach how copper can be incorporated in the enzyme based on two crystal structures containing Ag(I) and Cd(II) in place of Cu(I) and Cu(II). While we find a linear coordination for Cu(I) and a distorted octahedral environment for Cu(II) we also find the possibility of tetrahedral coordinations in both cases. This structural flexibility may allow the enzyme to catalyze the redox process and accommodate copper in both oxidation states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dierks, A. Dickmanns, A. Preusser-Kunze, B. Schmidt, M. Mariappan, K. von Figura, R. Ficner, M.G. Rudolph, Cell 121, 541 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Knop, P. Engi, R. Lemnaru, F.P. Seebeck, ChemBioChem 16, 2147 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Meury, M. Knop, F.P. Seebeck, Angew. Chem. Int. Ed. 56, 8115 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Changela, K. Chen, Y. Xue, J. Holschen, C.E. Outten, T.V. O’Halloran, A. Mondragon, Science 301, 1383 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    R. Wimmer, T. Herrmann, M. Solioz, K. Wuthrich, J. Biol. Chem. 274, 22597 (1999)CrossRefGoogle Scholar
  6. 6.
    D. Roeser, A. Preusser-Kunze, B. Schmidt, K. Gasow, J.G. Wittmann, T. Dierks, K. von Figura, M.G. Rudolph, Proc. Natl. Acad. Sci. USA 103, 81 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    L. Carlson, E.R. Ballister, E. Skordalakes, D.S. King, M.A. Breidenbach, S.A. Gilmore, J.M. Berger, C.R. Bertozzi, J. Biol. Chem. 283, 20117 (2008)CrossRefGoogle Scholar
  8. 8.
    A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, J. Phys. Chem. B 102, 3586 (1998)CrossRefGoogle Scholar
  9. 9.
    A.D. MacKerell, N.K. Banavali, J. Comput. Chem. 21, 105 (2000)CrossRefGoogle Scholar
  10. 10.
    A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25, 1400 (2004)CrossRefGoogle Scholar
  11. 11.
    S.E. Feller, A.D. MacKerell, J. Phys. Chem. B 104, 7510 (2000)CrossRefGoogle Scholar
  12. 12.
    S.E. Feller, K. Gawrisch, A.D. MacKerell, J. Am. Chem. Soc. 124, 318 (2002)CrossRefGoogle Scholar
  13. 13.
    N. Foloppe, A.D. MacKerell, J. Comput. Chem. 21, 86 (2000)CrossRefGoogle Scholar
  14. 14.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 26, 1781 (2005)CrossRefGoogle Scholar
  15. 15.
    J.M. Word, S.C. Lovell, J.S. Richardson, D.C. Richardson, J. Mol. Biol. 285, 1735 (1999)CrossRefGoogle Scholar
  16. 16.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 27 (1996)CrossRefGoogle Scholar
  18. 18.
    P. Sherwood, A. de Vries, M. Guest, G. Schreckenbach, C. Catlow, S. French, A. Sokol, S. Bromley, W. Thiel, A. Turner, et al., Comp. Theor. Chem. 632, 1 (2003)Google Scholar
  19. 19.
    S. Metz, J. Kästner, A.A. Sokol, T.W. Keal, P. Sherwood, WIREs Comput. Mol. Sci. 4, 101 (2014)CrossRefGoogle Scholar
  20. 20.
    ChemShell, a Computational Chemistry Shell, Accessed May 8 (2017) see http://www.chemshell.org
  21. 21.
    W. Smith, C. Yong, P. Rodger, Mol. Simul. 28, 385 (2002)CrossRefGoogle Scholar
  22. 22.
    TURBOMOLE V7.0, 2015 a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, Accessed May 8 2017, available from http://www.turbomole.com
  23. 23.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)CrossRefGoogle Scholar
  25. 25.
    F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)CrossRefGoogle Scholar
  26. 26.
    J. Kästner, J.M. Carr, T.W. Keal, W. Thiel, A. Wander, P. Sherwood, J. Phys. Chem. A 113, 11856 (2009)CrossRefGoogle Scholar
  27. 27.
    J.J. Warren, K.M. Lancaster, J.H. Richards, H.B. Gray, J. Inorg. Biochem. 115, 119 (2012)CrossRefGoogle Scholar
  28. 28.
    I. Shimizu, Y. Morimoto, D. Faltermeier, M. Kerscher, S. Paria, T. Abe, H. Sugimoto, N. Fujieda, K. Asano, T. Suzuki, P. Comba, S. Itoh, Inorg. Chem. 56, 9634 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Itoh, N. Kishikawa, T. Suzuki, H.D. Takagi, Dalton Trans. 6, 1066 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Chemistry, University of StuttgartStuttgartGermany

Personalised recommendations