The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1537–1554 | Cite as

Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems

  • James I. RoscowEmail author
  • Holly Pearce
  • Hamideh Khanbareh
  • Sohini Kar-Narayan
  • Chris R. Bowen
Open Access
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications


Piezoelectrics are an important class of materials for mechanical energy harvesting technologies. In this paper we evaluate the piezoelectric harvesting process and define the key material properties that should be considered for effective material design and selection. Porous piezoceramics have been shown previously to display improved harvesting properties compared to their dense counterparts due to the reduction in permittivity associated with the introduction of porosity. We further this concept by considering the effect of the increased mechanical compliance of porous piezoceramics on the energy conversion efficiency and output electrical power. Finite element modelling is used to investigate the effect of porosity on relevant energy harvesting figures of merit. The increase in compliance due to porosity is shown to increase both the amount of mechanical energy transmitted into the system under stress-driven conditions, and the stress-driven figure of merit, FoM33X, despite a reduction in the electromechanical coupling coefficient. We show the importance of understanding whether a piezoelectric energy harvester is stress- or strain-driven, and demonstrate how porosity can be used to tailor the electrical and mechanical properties of piezoceramic harvesters. Finally, we derive two new figures of merit based on the consideration of each stage in the piezoelectric harvesting process and whether the system is stress- (FijX), or strain-driven (Fijx).


  1. 1.
    C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2013) CrossRefGoogle Scholar
  2. 2.
    K. Uchino, Energy Technol. 6, 829 (2018) CrossRefGoogle Scholar
  3. 3.
    D.B. Deutz, J.-A. Pascoe, B. Schelen, S. van der Zwaag, D.M. de Leeuw, P. Groen, Mater. Horiz. 5, 444 (2018) CrossRefGoogle Scholar
  4. 4.
    R.A. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    J.I. Roscow, Y. Zhang, J. Taylor, C.R. Bowen, Eur. Phys. J. Special Topics 224, 2949 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    J.I. Roscow, Y. Zhang, M.J. Kraśny, R.W.C. Lewis, J.T. Taylor, C.R. Bowen, J. Phys. D 51, 225301 (2018) ADSCrossRefGoogle Scholar
  7. 7.
    A.N. Rybyanets, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 58, 1492 (2011) CrossRefGoogle Scholar
  8. 8.
    A.P. Roberts, E.J. Garboczi, J. Am. Ceram. Soc. 83, 3041 (2000) CrossRefGoogle Scholar
  9. 9.
    V.V. Varadan, Y.R. Roh, V.K. Varadan, R.H. Tancrell, in Proceedings, IEEE Ultrasonics Symposium (1989), p. 727 Google Scholar
  10. 10.
    S. Crossley, S. Kar-Narayan, Nanotechnology 26, 344001 (2015) CrossRefGoogle Scholar
  11. 11.
    T. Rödig, A. Schönecker, G. Gerlach, J. Am. Ceram. Soc. 93, 901 (2010) CrossRefGoogle Scholar
  12. 12.
    K. Uchino, J.R. Giniewicz, in Micromechatronics (CRC Press, New York, 2003), p. 131 Google Scholar
  13. 13.
    R.W.C. Lewis, A.C.E. Dent, R. Stevens, C.R. Bowen, Smart Mater. Struct. 20, 085002 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    J.I. Roscow, R.W.C. Lewis, J. Taylor, C.R. Bowen, Acta Mater. 128, 207 (2017) CrossRefGoogle Scholar
  15. 15.
    D. Berlincourt, H.A. Krueger, C. Near, Technical Publication TP-226, Morgan Electroceramics, 1999, pp. 1–12 Google Scholar
  16. 16.
    J.I. Roscow, J. Taylor, C.R. Bowen, Ferroelectrics 498, 40 (2016) CrossRefGoogle Scholar
  17. 17.
    A.J. Moulson, J.M. Herbert, in Electroceramics (Wiley, Chichester, 2003), p. 71 Google Scholar
  18. 18.
    T. Arai, K. Ayusawa, H. Sato, T. Miyata, K. Kazutami, K. Keiichi, Jpn. J. Appl. Phys. 30, 2253 (1991) ADSCrossRefGoogle Scholar
  19. 19.
    S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Cranciun, G. Guidarelli, J. Acoust. Soc. Am. 106, 733 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    H. Kara, R. Ramesh, R. Stevens, C.R. Bowen, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 50, 289 (2003) CrossRefGoogle Scholar
  21. 21.
    J. Seuba, S. Deville, C. Guizard, A.J. Stevenson, Sci. Rep. 6, 24326 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mater. Sci. Eng. B 192, 52 (2015) CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5, 6569 (2017) CrossRefGoogle Scholar
  24. 24.
    W. Liu, J. Xu, Y. Wang, H. Xu, X. Xi, J. Yang, J. Am. Ceram. Soc. 96, 1827 (2013) CrossRefGoogle Scholar
  25. 25.
    W. Liu, N. Li, Y. Wang, H. Xu, J. Wang, J. Yang, J. Eur. Ceram. Soc. 35, 3467 (2015) CrossRefGoogle Scholar
  26. 26.
    W. Liu, L. Lv, Y. Li, Y. Wang, J. Wang, C. Xue, Y. Dong, J. Yang, Ceram. Int. 43, 6542 (2017) CrossRefGoogle Scholar
  27. 27.
    M. Smith, Y.S. Choi, C. Boughey, S. Kar-Narayan, Flex. Print. Electr. 2, 015004 (2017) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • James I. Roscow
    • 1
    Email author
  • Holly Pearce
    • 1
  • Hamideh Khanbareh
    • 1
  • Sohini Kar-Narayan
    • 2
  • Chris R. Bowen
    • 1
  1. 1.Materials and Structures Centre, Department of Mechanical Engineering, University of BathBathUK
  2. 2.Department of Materials ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations