Space-time resolution of size-dispersed suspensions in Deterministic Lateral Displacement microfluidic devices

Running Deterministic Lateral Displacement under transient conditions to improve separation resolution: a proof of concept
  • Maria Anna Murmura
  • Alessandra Adrover
  • Stefano CerbelliEmail author
Regular Article
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes


Deterministic Lateral Displacement (DLD) is a relatively recent microfluidics-assisted technique which allows the size-based separation of a population of micrometric particles suspended in a buffer solution. The core of the device is a shallow channel with rectangular cross-section filled with an array of solid obstacles arranged in a spatially periodic lattice, whose directions are slanted with respect to the channel walls. In practical implementations of DLD, particles are continuously introduced at a localized position of the channel entrance and migrate along different average directions downstream the device according to their size. Thus, at steady state, size-sorted subpopulations can be collected at different positions of the channel outlet. Besides, theoretical predictions of recent models of particle transport in these devices suggest that not only the direction of the average particle velocity, but also its magnitude (i.e. the mobility) depends sensitively on particle size. By exploiting this dependence, a novel use of DLD devices is here proposed, where the size-driven separation is realized over time and space by running the process under transient conditions, thus mimicking a classical chromatographic separation. We show how this approach is particularly effective for particles of specific (critical) dimensions, which are known to impair the efficiency of the steady-state separation process. Numerical predictions based on a hard-wall repulsive potential for the particle-obstacle interaction suggest that unprecedented separation performance for near-critical particle size could be obtained in transient conditions within the same channel length used for the time-continuous separation. The case of cylindrical obstacles and spherically shaped particles is considered in detail as an illustrative example.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.B. Kerby, R.S. Legge, A. Tripathi, Anal. Chem. 78, 8273 (2006) CrossRefGoogle Scholar
  2. 2.
    J.P. McMullen, K.F. Jensen, Org. Proc. Res. Dev. 15, 398 (2011) CrossRefGoogle Scholar
  3. 3.
    F. Raynal, A. Beuf, F. Plaza, J. Scott, P. Carrière, M. Cabrera, J.P. Cloarec, É. Souteyrand, Phys. Fluids 19, 017112 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    C.X. Zhao, L. He, S.Z. Qiao, A.P. Middelberg, Chem. Eng. Sci. 66, 1463 (2011) CrossRefGoogle Scholar
  5. 5.
    A. Borgia, B.G. Wensley, A. Soranno, D. Nettels, M.B. Borgia, A. Hoffmann, S.H. Pfeil, E.A. Lipman, J. Clarke, B. Schuler, Nat. Commun. 3, 1195 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    R. Russell, I.S. Millett, M.W. Tate, L.W. Kwok, B. Nakatani, S.M. Gruner, S.G. Mochrie, V. Pande, S. Doniach, D. Herschlag et al., Proc. Natl. Acad. Sci. 99, 4266 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    M. Giona, A. Adrover, S. Cerbelli, F. Garofalo, Phys. Fluids 21, 123601 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    A. Adrover, S. Cerbelli, F. Garofalo, M. Giona, Anal. Chem. 81, 8009 (2009) CrossRefGoogle Scholar
  9. 9.
    F. Yuan, K.M. Isaac, Sens. Actuat. B 238, 226 (2017) CrossRefGoogle Scholar
  10. 10.
    F. Garofalo, A. Adrover, S. Cerbelli, M. Giona, AIChE J. 56, 318 (2010) Google Scholar
  11. 11.
    K. Ward, Z.H. Fan, J. Micromech. Microeng. 25, 094001 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    S. Cerbelli, A. Adrover, F. Garofalo, M. Giona, Microfluid. Nanofluid. 6, 747 (2009) CrossRefGoogle Scholar
  13. 13.
    T. Sun, R. Chance, W. Graessley, D. Lohse, Macromolecules 37, 4304 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    D.W. Inglis, N. Herman, G. Vesey, Biomicrofluidics 4, 9 (2010) Google Scholar
  15. 15.
    N. Li, D. Kamei, C.M. Ho, in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007 (2007), p. 932 Google Scholar
  16. 16.
    S. Holm, J. Beech, M. Barrett, J. Tegenfeldt, Lab Chip 11, 1326 (2011) CrossRefGoogle Scholar
  17. 17.
    J. Green, M. Radisic, S. Murthy, Anal. Chem. 81, 9178 (2009) CrossRefGoogle Scholar
  18. 18.
    B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink, R.L. Bruce, R.H. Austin, G. Stolovitzky, Y. Astier, Nat. Nanotechnol. 11, 936 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    L. Huang, E. Cox, R. Austin, J. Sturm, Science 304, 987 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    D. Inglis, J. Davis, R. Austin, J. Sturm, Lab Chip 6, 655 (2006) CrossRefGoogle Scholar
  21. 21.
    H. Brenner, D. Edwards, Macrotransport Processes (Butterworth-Heinemann Series in Chemical Engineering, 1993) Google Scholar
  22. 22.
    S. Cerbelli, Asia-Pacific J. Chem. Eng. 7, S356 (2012) CrossRefGoogle Scholar
  23. 23.
    S. Cerbelli, M. Giona, F. Garofalo, Microfluid. Nanofluid. 15, 431 (2013) CrossRefGoogle Scholar
  24. 24.
    S. Cerbelli, F. Garofalo, M. Giona, Microfluid. Nanofluid. 19, 1035 (2015) CrossRefGoogle Scholar
  25. 25.
    R. Devendra, G. Drazer, Anal. Chem. 84, 10621 (2012) CrossRefGoogle Scholar
  26. 26.
    K. Loutherback, K. Chou, J. Newman, J. Puchalla, R. Austin, J. Sturm, Microfluid Nanofluid. 9, 1143 (2010) CrossRefGoogle Scholar
  27. 27.
    A. Grimm, O. Gräser, Europhys. Lett. 92, 24001 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    G. Davino, Rheolog. Acta 52, 221 (2013) CrossRefGoogle Scholar
  29. 29.
    M. Maxey, J. Riley, Phys. Fluids 26, 883 (1983) ADSCrossRefGoogle Scholar
  30. 30.
    J. Frechette, G. Drazer, J. Fluid Mech. 627, 379 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    J. McGrath, M. Jimenez, H. Bridle, Lab Chip 14, 4139 (2014) CrossRefGoogle Scholar
  32. 32.
    R. Zwanzig, Nonequilibrium statistical physics (Oxford University Press, Oxford, 2001) Google Scholar
  33. 33.
    M. Giona, Physica A 473, 561 (2017) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Giona, F. Garofalo, Phys. Rev. E 92, 032104 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    S. Cerbelli, Phys. Rev. E 87, 060102 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria Anna Murmura
    • 1
  • Alessandra Adrover
    • 1
  • Stefano Cerbelli
    • 1
    Email author
  1. 1.Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di RomaRomaItaly

Personalised recommendations