A lattice model approach to the morphology formation from ternary mixtures during the evaporation of one component

  • Emilio N. M. Cirillo
  • Matteo Colangeli
  • Ellen Moons
  • Adrian Muntean
  • Stela-Andrea MunteanEmail author
  • Jan van Stam
Open Access
Regular Article
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes


Stimulated by experimental evidence in the field of solution-born thin films, we study the morphology formation in a three state lattice system subjected to the evaporation of one component. The practical problem that we address is the understanding of the parameters that govern morphology formation from a ternary mixture upon evaporation, as is the case in the fabrication of thin films from solution for organic photovoltaics. We use, as a tool, a generalized version of the Potts and Blume-Capel models in 2D, with the Monte Carlo Kawasaki-Metropolis algorithm, to simulate the phase behaviour of a ternary mixture upon evaporation of one of its components. The components with spin 1, −1 and 0 in the Blume-Capel dynamics correspond to the electron-acceptor, electron-donor and solvent molecules, respectively, in a ternary mixture used in the preparation of the active layer films in an organic solar cell. Furthermore, we introduce parameters that account for the relative composition of the mixture, temperature, and interaction between the species in the system. We identify the parameter regions that are prone to facilitate the phase separation. Furthermore, we study qualitatively the types of formed configurations. We show that even a relatively simple model, as the present one, can generate key morphological features, similar to those observed in experiments, which proves the method valuable for the study of complex systems.


  1. 1.
    C. Battaile, Comput. Methods Appl. Mech. Eng. 197, 3386 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    E. Bänsch, S. Basting, R. Krahl, Discrete Continuous Dyn. Syst. Ser. B 35, 2325 (2014) CrossRefGoogle Scholar
  3. 3.
    M. Blume, Phys. Rev. 141, 517 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971) ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Bray, Adv. Phys. 43, 357 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    H.W. Capel, Physica 32, 966 (1966) ADSCrossRefGoogle Scholar
  7. 7.
    E.N.M. Cirillo, M. Colangeli, Phys. Rev. E 96, 052137 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    E.N.M. Cirillo, M. Colangeli, A. Muntean, Phys. Rev. E 94, 042116 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    E.N.M. Cirillo, M. Colangeli, A. Muntean, Multiscale Model Simul. 14, 906 (2016) MathSciNetCrossRefGoogle Scholar
  10. 10.
    E.N.M. Cirillo, M. Colangeli, A. Muntean, Physica A 488, 30 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    E.N.M. Cirillo, F.R. Nardi, C. Spitoni, in Applied and Industrial Mathematics in Italy III, Series on Advances in Mathematics for Applied Sciences (World Scientific, Singapore, 2010), Vol. 82, p. 208 Google Scholar
  12. 12.
    E.N.M. Cirillo, F.R. Nardi, J. Stat. Phys. 150, 1080 (2013) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E.N.M. Cirillo, F.R. Nardi, C. Spitoni, Eur. Phys. J. Special Topics 226, 2421 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    E.N.M. Cirillo, E. Olivieri, J. Stat. Phys. 83, 473 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    M. Colangeli, A. De Masi, E. Presutti, Phys. Lett. A 380, 1710 (2016) ADSCrossRefGoogle Scholar
  16. 16.
    M. Colangeli, A. De Masi, E. Presutti, J. Stat. Phys. 167, 1081 (2017) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Colangeli, A. De Masi, E. Presutti, J. Phys. A: Math. Theor. 50, 435002 (2017) CrossRefGoogle Scholar
  18. 18.
    J. Cummings, J.S. Lowengrub, B.G. Sumpter, S.M. Wise, R. Kumar, Soft Matter, 2018 (in press) Google Scholar
  19. 19.
    K. Dalnoki-Veress, J.A. Forrest, J.R. Stevens, J.R. Dutcher, Physica A 239, 87 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    M. Deijfen, O. Häggström, J. Bagley, Markov Process. Relat. Fields 10, 217 (2004) Google Scholar
  21. 21.
    C. Du, Y. Ji, J. Xue, T. Hou, J. Tang, S.-T. Lee, Y. Li, Sci. Rep. 5, 16854 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    M. Ibáñez de Berganza, E.E. Ferrero, S.A. Cannas, V. Loreto, A. Petri, Eur. Phys. J. Special Topics 143, 273 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    K. Kawasaki, Kinetics of Ising model, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic Press, Cambridge, 1972), Vol. 2, p. 443 Google Scholar
  24. 24.
    C. Landim, P. Lemire, J. Stat. Phys. 164, 346 (2016) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    B.P. Lyons, N. Clarke, C. Groves, Energy Environ. Sci. 5, 7657 (2012) CrossRefGoogle Scholar
  26. 26.
    B.P. Lyons, N. Clarke, C. Groves, J. Phys. Chem. C 45, 22572 (2011) CrossRefGoogle Scholar
  27. 27.
    F. Manzo, E. Olivieri, J. Stat. Phys. 104, 1029 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R.G.E. Kimber, A.B. Walker, J. Phys. Chem. B 114, 36 (2010) CrossRefGoogle Scholar
  29. 29.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) ADSCrossRefGoogle Scholar
  30. 30.
    J. Michels, E. Moons, Macromolecules 46, 8693 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    L. Onsager, Phys. Rev. 65, 117 (1944) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R.B. Potts, Proc. Camb. Philos. Soc. 48, 106 (1952) ADSCrossRefGoogle Scholar
  33. 33.
    E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics (Springer, Berlin, 2009) Google Scholar
  34. 34.
    C. Site, S.N. Majumdar, Phys. Rev. Lett. 74, 4321 (1995) ADSCrossRefGoogle Scholar
  35. 35.
    M. Sprenger, S. Walheim, A. Budkowski, U. Steiner Interface Sci. 11, 225 (2003) CrossRefGoogle Scholar
  36. 36.
    S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 30, 4995 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di RomaRomaItaly
  2. 2.Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi dell’AquilaL’AquilaItaly
  3. 3.Department of Engineering and PhysicsKarlstad UniversityKarlstadSweden
  4. 4.Department of Mathematics and Computer ScienceKarlstad UniversityKarlstadSweden
  5. 5.Department of Engineering and Chemical SciencesKarlstad UniversityKarlstadSweden

Personalised recommendations