Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2617–2640 | Cite as

Understanding nonlinearity in electrochemical systems

  • Nicolas WolffEmail author
  • Nina Harting
  • Fridolin Röder
  • Marco Heinrich
  • Ulrike Krewer
Regular Article
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

Commonly applied electrochemical methods for the analysis and diagnosis of the processes in and state of electrochemical cells, such as Electrochemical Impedance Spectroscopy and Current Interrupt analysis, are either limited to linear analysis or the signal is quite unspecific which hampers to extract significant and precise nonlinear information. We present a systematic insight into how significant information can be extracted from a promising alternative nonlinear dynamic electrochemical analysis technique, Nonlinear Frequency Response Analysis. Further, we present a fundamental and in-depth study of impact of processes at electrodes on nonlinear behavior. Model based analysis of a reaction process with Butler-Volmer kinetics and of a diffusion process are thereby used to understand and interpret the excitation of higher harmonics. A reaction with a symmetric current potential relation thereby causes an excitation of the third harmonic, whereas for the diffusion process the second and third harmonic are excited. Nonlinearities caused by diffusion are limited to low frequencies. Further, parameter variations of exchange current density, double layer capacitance and diffusion coefficient as well as variation of the input signal show that the symmetry of the nonlinear behavior between current and potential is responsible for the excitation of the second and third harmonic. The tangent method is presented as a suitable method to quantitatively evaluate and compare influences of each process and parameter on spectrum features and the related characteristic frequency range. The work thus serves as a guideline for using and interpreting nonlinear frequency response spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, D.U. Sauer, J. Power Sources 196, 5334 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    H. Baltruschat, Am. Soc. Mass Spectr. 15, 1693 (2004) CrossRefGoogle Scholar
  3. 3.
    A.J. Bard, L.R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, 2001) Google Scholar
  4. 4.
    B. Bensmann, M. Petkovska, R. Hanke-rauschenbach, K. Sundmacher, J. Electrochem. Soc. 157, 1279 (2010) CrossRefGoogle Scholar
  5. 5.
    D.M. Bernardi, J. Go, J. Power Sources 196, 412 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    N. Elgrishi, K.J. Rountree, B.D. Mccarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018) CrossRefGoogle Scholar
  7. 7.
    N. Harting, N. Wolff, U. Krewer, Electrochim. Acta 281, 378 (2018) CrossRefGoogle Scholar
  8. 8.
    N. Harting, N. Wolff, F. Röder, U. Krewer, Electrochim. Acta 248, 133 (2017) CrossRefGoogle Scholar
  9. 9.
    J. Heinze, Angew. Chem. 23, 831 (1984) CrossRefGoogle Scholar
  10. 10.
    T. Jacobsen, K. West, Electrochim. Acta 40 (1995) Google Scholar
  11. 11.
    T. Kadyk, R. Hanke-Rauschenbach, K. Sundmacher, J. Electroanal. Chem. 630, 19 (2009) CrossRefGoogle Scholar
  12. 12.
    T. Kadyk, R. Hanke-Rauschenbach, K. Sundmacher, J. Appl. Electrochem. 41, 1021 (2011) CrossRefGoogle Scholar
  13. 13.
    T. Kadyk, R. Hanke-rauschenbach, K. Sundmacher, Int. J. Hydrogen Energy 37, 7689 (2012) CrossRefGoogle Scholar
  14. 14.
    M. Kiel, O. Bohlen, D.U. Sauer, Electrochim. Acta 53, 7367 (2008) CrossRefGoogle Scholar
  15. 15.
    M. Koper, J. Chem. Soc. Faraday Trans. 94, 1369 (1998) CrossRefGoogle Scholar
  16. 16.
    J. Koryta, J. Dvorak, V. Bohackova, Lehrbuch der Elektrochemie (Springer Verlag, 2012) Google Scholar
  17. 17.
    U. Krewer, A. Kamat, K. Sundmacher, J. Electroanal. Chem. 609, 105 (2007) CrossRefGoogle Scholar
  18. 18.
    U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann, ChemPhysChem 12, 2518 (2011) CrossRefGoogle Scholar
  19. 19.
    F. Kubannek, U. Krewer, Electrochim. Acta 210, 862 (2016) CrossRefGoogle Scholar
  20. 20.
    Q. Mao, U. Krewer, Electrochim. Acta 68, 60 (2012) CrossRefGoogle Scholar
  21. 21.
    Q. Mao, U. Krewer, Electrochim. Acta 103, 188 (2013) CrossRefGoogle Scholar
  22. 22.
    Q. Mao, U. Krewer, R. Hanke-Rauschenbach, Electrochem. Commun. 12, 1517 (2010) CrossRefGoogle Scholar
  23. 23.
    M.D. Murbach, D.T. Schwartz, J. Electrochem. Soc. 164, 3311 (2017) CrossRefGoogle Scholar
  24. 24.
    H. Ramon, E. Siller, Non-Linear Modal Analysis Methods for Engineering, PhD thesis, Imperial College London, 2004 Google Scholar
  25. 25.
    J. Rusling, S.L. Suib, Adv. Mater. 6, 922 (1994) CrossRefGoogle Scholar
  26. 26.
    H. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, P. Birke, Sensors 10, 5604 (2010) CrossRefGoogle Scholar
  27. 27.
    H. Varela, K. Krischer, Catal. Today 70, 411 (2001) CrossRefGoogle Scholar
  28. 28.
    T.R. Vidakovic-Koch, V.V. Panic, M. Andric, M. Petkovska, K. Sundmacher, J. Phys. Chem. C 115, 17341 (2011) CrossRefGoogle Scholar
  29. 29.
    T.R. Vidakovic-Koch, V.V. Panic, M. Andric, M. Petkovska, K. Sundmacher, J. Phys. Chem. C 115, 17352 (2011) CrossRefGoogle Scholar
  30. 30.
    J.R. Wilson, D.T. Schwartz, S.B. Adler, Electrochim. Acta 51, 1389 (2006) CrossRefGoogle Scholar
  31. 31.
    N. Wolff, N. Harting, M. Heinrich, F. Röder, U. Krewer, Electrochim. Acta 260, 614 (2018) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicolas Wolff
    • 1
    • 2
    Email author
  • Nina Harting
    • 1
    • 2
  • Fridolin Röder
    • 1
  • Marco Heinrich
    • 1
    • 2
    • 3
  • Ulrike Krewer
    • 1
    • 2
  1. 1.Institute of Energy and Process Systems Engineering, TU BraunschweigBraunschweigGermany
  2. 2.Battery LabFactory Braunschweig, TU BraunschweigBraunschweigGermany
  3. 3.Physikalisch Technische BundesanstaltBraunschweigGermany

Personalised recommendations