Advertisement

Conditional expectation of the duration of the classical gambler problem with defects

  • Alessandro CiallellaEmail author
  • Emilio N. M. Cirillo
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

The effect of space inhomogeneities on a diffusing particle is studied in the framework of the 1D random walk. The typical time needed by a particle to cross a one-dimensional finite lane, the so-called residence time, is computed possibly in presence of a drift. A local inhomogeneity is introduced as a single defect site with jumping probabilities differing from those at all the other regular sites of the system. We find complex behaviors in the sense that the residence time is not monotonic as a function of some parameters of the model, such as the position of the defect site. In particular we show that introducing at suitable positions a defect opposing to the motion of the particles decreases the residence time, i.e., favors the flow of faster particles. The problem we study in this paper is strictly connected to the classical gambler’s ruin problem, indeed, it can be thought as that problem in which the rules of the game are changed when the gambler’s fortune reaches a particular a priori fixed value. The problem is approached both numerically, via Monte Carlo simulations, and analytically with two different techniques yielding different representations of the exact result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Cristiani, D. Peri, Appl. Math. Model. 45, 285 (2017) MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.J. Saxton, Biophys. J. 66, 394 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    F. Höfling, T. Franosch, Rep. Prog. Phys. 76, 046602 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Mourão, J.B. Hakim, S. Schnell, Biophys. J. 107, 2761 (2017) CrossRefGoogle Scholar
  5. 5.
    A.J. Ellery, M.J. Simpson, S.W. McCue, R.E. Baker, J. Chem. Phys. 140, 054108 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    K. To, P. Lai, H.K. Pak, Phys. Rev. Lett. 86, 71 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    I. Zuriguel, A. Garcimartín, D. Maza, L.A. Pugnaloni, J.M. Pastor, Phys. Rev. E 71, 051303 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    F. Alonso-Marroquin, S.I. Azeezullah, S.A. Galindo-Torres, L.M. Olsen-Kettle, Phys. Rev. E 85, 020301 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo, D. Maza, Phys. Rev. Lett. 107, 278001 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    D. Helbing, Rev. Mod. Phys. 73, 1067 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    D. Helbing, I. Farkas, P. Molnàr, T. Vicsek, in Pedestrian and Evacuation Dynamics, edited by M. Schreckenberg, S.D. Sharma (Springer, Berlin, 2002), pp. 21–58 Google Scholar
  12. 12.
    E.N.M. Cirillo, A. Muntean, Physica A 392, 3578 (2013) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Muntean, E.N.M. Cirillo, O. Krehel, M. Bohm, in Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, edited by A. Muntean, F. Toschi (Springer, Vienna, 2014), Vol. 553, pp. 75–103 Google Scholar
  14. 14.
    E.N.M. Cirillo, A. Muntean, Comptes Rendus Mécanique 340, 626 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    A. Ciallella, E.N.M. Cirillo, P.L. Curseu, A. Muntean, Math. Models Methods Appl. Sci. 28, 1831 (2018) MathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Albi, M. Bongini, E. Cristiani, D. Kalise, SIAM J. Appl. Math. 76, 1683 (2016) MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    D. Helbing, L. Buzna, A. Johansson, T. Werner, Transp. Sci. 39, 1 (2005) CrossRefGoogle Scholar
  19. 19.
    R. Escobar, A. De La Rosa, in Advances in Artificial Life, Proceedings of the 7th European Conference, ECAL, 2003, Dortmund, Lecture Notes in Computer Science, edited by W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, J.T. Kim (Springer, Berlin, 2003), Vol. 2801, pp. 97–106 Google Scholar
  20. 20.
    A. Ciallella, E.N.M. Cirillo, J. Sohier, Phys. Rev. E 97, 052116 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    A. Ciallella, E.N.M. Cirillo, Kinet. Relat. Mod. 11, 1475 (2018) CrossRefGoogle Scholar
  22. 22.
    E.N.M. Cirillo, M. Colangeli, A. Muntean, Phys. Rev. E 94, 042116 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Janowsky, J.L. Lebowitz, J. Stat. Phys. 77, 35 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    B. Scoppola, C. Lancia, R. Mariani, J. Stat. Phys. 161, 843 (2015) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E.N.M. Cirillo, O. Krehel, A. Muntean, R. van Santen, Phys. Rev. E 94, 042115 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    E.N.M. Cirillo, O. Krehel, A. Muntean, R. van Santen, S. Aditya, Physica A 442, 436 (2016) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    B.W. Fitzgerald, J.T. Padding, R. van Santen, Phys. Rev. E 95, 013307 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    W. Feller, in An Introduction to Probability Theory and Its Applications (John wiley & Sons, Inc, New York, London, Sidney 1968), Vol. 1 Google Scholar
  29. 29.
    F. Stern, Math. Mag. 48, 200 (1975) MathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Lengyel, Appl. Math. Lett. 22, 351 (2009) MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.N.M. Cirillo, M. Colangeli, Phys. Rev. E 96, 052137 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    D. Andreucci, E.N.M. Cirillo, M. Colangeli, D. Gabrielli, J. Stat. Phys. 174, 469 (2019) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di RomaRomaItaly

Personalised recommendations