Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2515–2538 | Cite as

The impact of solvation and dissociation on the transport parameters of liquid electrolytes: continuum modeling and numerical study

  • Wolfgang Dreyer
  • Clemens GuhlkeEmail author
  • Rüdiger Müller
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

Electro-thermodynamics provides a consistent framework to derive continuum models for electrochemical systems. For the application to a specific experimental system, the general model must be equipped with two additional ingredients: a free energy model to calculate the chemical potentials and a kinetic model for the kinetic coefficients. Suitable free energy models for liquid electrolytes incorporating ion–solvent interaction, finite ion sizes and solvation already exist and have been validated against experimental measurements. In this work, we focus on the modeling of the mobility coefficients based on Maxwell–Stefan setting and incorporate them into the general electro-thermodynamic framework. Moreover, we discuss the impact of model parameter on conductivity, transference numbers and salt diffusion coefficient. In particular, the focus is set on the solvation of ions and incomplete dissociation of a non-dilute electrolyte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bothe, W. Dreyer, Acta Mech. 226, 1757 (2015) MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2000) Google Scholar
  3. 3.
    A.M. Bizeray, D.A. Howey, C.W. Monroe, J. Electrochem. Soc. 163, E223 (2016) CrossRefGoogle Scholar
  4. 4.
    J.E. Dykstra, P.M. Biesheuvel, H. Bruning, A. Ter Heijne, Phys. Rev. E 90, 013302 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    M.M. Doeff, L. Edman, S.E. Sloop, J. Kerr, L.C. De Jonghe, J. Power Sources 89, 227 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    W. Dreyer, C. Guhlke, M. Landstorfer, Electrochem. Commun. 43, 75 (2014) CrossRefGoogle Scholar
  7. 7.
    W. Dreyer, C. Guhlke, M. Landstorfer, R. Müller, Eur. J. Appl. Math. 29, 708 (2018) CrossRefGoogle Scholar
  8. 8.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North Holland, Amsterdam, 1962) Google Scholar
  9. 9.
    W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 15, 7075 (2013) CrossRefGoogle Scholar
  10. 10.
    W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 17, 27176 (2015) CrossRefGoogle Scholar
  11. 11.
    W. Dreyer, C. Guhlke, R. Müller, Phys. Chem. Chem. Phys. 18, 24966 (2016) CrossRefGoogle Scholar
  12. 12.
    W. Dreyer, C. Guhlke, R. Müller, Entropy 20, 939 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    R. Datta, S.A. Vilekar, Chem. Eng. Sci. 65, 5976 (2010) CrossRefGoogle Scholar
  14. 14.
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021502 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    M. Landstorfer, C. Guhlke, W. Dreyer, Electrochim. Acta 201, 187 (2016) CrossRefGoogle Scholar
  16. 16.
    C.W. Monroe, C. Delacourt, Electrochim. Acta 114, 649 (2013) CrossRefGoogle Scholar
  17. 17.
    Y. Ma, M. Doyle, T.F. Fuller, M.M. Doeff, L.C. De Jonghe, J. Newman, J. Electrochem. Soc. 142, 1859 (1995) CrossRefGoogle Scholar
  18. 18.
    C.W. Monroe, Ionic mobility and diffusivity, in Encyclopedia of Applied Electrochemistry, edited by G. Kreysa, K. Ota, R.F. Savinell (Springer, New York, 2014), pp. 1125–1130 Google Scholar
  19. 19.
    I. Müller, Thermodynamics (Pitman Publishing, London, 1985) Google Scholar
  20. 20.
    J. Newman, K.E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken, NJ, 2004) Google Scholar
  21. 21.
    Y.S. Oren, P.M. Biesheuvel, Phys. Rev. Appl. 9, 024034 (2018) ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Ramos, Appl. Math. Model. 40, 115 (2016) MathSciNetCrossRefGoogle Scholar
  23. 23.
    R.H. Stokes, B.J. Levien, J. Am. Chem. Soc. 68, 1852 (1946) CrossRefGoogle Scholar
  24. 24.
    W.H. Smyrl, J. Newman, J. Phys. Chem. 72, 4660 (1968) CrossRefGoogle Scholar
  25. 25.
    G.L. Standart, R. Taylor, R. Krishna, Chem. Eng. Commun. 3, 277 (1979) CrossRefGoogle Scholar
  26. 26.
    M. Tedesco, H.V.M. Hamelers, P.M. Biesheuvel, J. Membrane Sci. 531, 172 (2017) CrossRefGoogle Scholar
  27. 27.
    R. Taylor, R. Krishna, in Multicomponent Mass Transfer (John Wiley & Sons, New York, 1993), Vol. 2 Google Scholar
  28. 28.
    C. Truesdell, J. Chem. Phys. 37, 2336 (1962) ADSCrossRefGoogle Scholar
  29. 29.
    G. Wedler, Lehrbuch der Physikalischen Chemie (Wiley-, Weinheim, 2004) Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wolfgang Dreyer
    • 1
  • Clemens Guhlke
    • 1
    Email author
  • Rüdiger Müller
    • 1
  1. 1.Weierstrass InstituteBerlinGermany

Personalised recommendations