Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1555–1573 | Cite as

Multi-functional perovskites – an investigation of compositional and processing influence on microstructure, dielectric and ferroelectric properties

  • Yang BaiEmail author
  • Huaicheng Xiang
  • Heli Jantunen
  • Jari Juuti
Open Access
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications

Abstract

Ba(Ni0.5Nb0.5)O2.75 (BNNO) doped KNbO3 (KN) and (K0.5Na0.5)NbO3 (KNN), abbreviated as KBNNO and KNBNNO, respectively, have been recently reported to co-exhibit narrow band gaps (visible range) and strong piezoelectric/pyroelectric effects simultaneously within the same material. This had never been achieved in a single ceramic material. Such a breakthrough may allure the development of fundamentally novel multi-source energy harvesters based on only one piece of material as well as advanced optoelectronic devices with multiple functions. It has been found that the window of getting the unique combination of these properties is very narrow. Even a slight shifting away from the stoichiometry of the compositions may induce a significant loss of the properties. The reasons are expected to be in the compositions and microstructure of these materials. However, detailed information – e.g. the correlation of the compositions, processing conditions, microstructure and properties – remains to be investigated for such novel materials. In this paper, the inter-influence of different doping amounts of BNNO, calcination and sintering temperatures, phase structures and defects (potassium loss and oxygen vacancy) on the dielectric and ferroelectric properties are studied. The paper reveals the principles and provides guidance to achieving good ferroelectric properties in these emerging perovskite structured materials.

Notes

Acknowledgments

Open access funding provided by the University of Oulu, Finland.

References

  1. 1.
    V.M. Fridkin, Photoferroelectrics (Springer, Berlin, 1979) Google Scholar
  2. 2.
    B.I. Sturman, V.M. Fridkin, The photovoltaic and photorefractive effects in noncentrosymmetric materials (Bordon and Breach, Amsterdam, 1992) Google Scholar
  3. 3.
    V.M. Fridkin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1551 (2013) CrossRefGoogle Scholar
  4. 4.
    J.E. Spanier, V.M. Fridkin, A.M. Rappe, A.R. Akbashev, A. Polemi, Y. Qi, Z. Gu, S.M. Young, C.J. Hawley, D. Imbrenda, G. Xiao, A.L. Bennett-Jackson, C.L. Johnson, Nat. Photonics 10, 688 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Adv Mater. 28, 5153 (2016) CrossRefGoogle Scholar
  6. 6.
    I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352, aad4424 (2016) CrossRefGoogle Scholar
  8. 8.
    G.K. Singh, Energy 53, 1 (2013) CrossRefGoogle Scholar
  9. 9.
    D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    J. Roedel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram.Soc. 92, 1153 (2009) CrossRefGoogle Scholar
  11. 11.
    C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014) CrossRefGoogle Scholar
  12. 12.
    C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 7, 3836 (2014) CrossRefGoogle Scholar
  13. 13.
    Y. Bai, H. Jantunen, J. Juuti, Adv. Mater. 2018, 1707271 (2018) CrossRefGoogle Scholar
  14. 14.
    G. Vats, Y. Bai, D. Zhang, J. Juuti, J. Seidel, Adv. Optic. Mater. 2019, 1800858 (2019) CrossRefGoogle Scholar
  15. 15.
    Y. Bai, G. Vats, J. Seidel, H. Jantunen, J. Juuti, Adv. Mater. 2018, 1803821 (2018) CrossRefGoogle Scholar
  16. 16.
    R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 61 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    J. Chakrabartty, C. Harnagea, M. Celikin, F. Rosei, R. Nechache, Nat. Photonics 12, 271 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    N. Faraji, R. Adelung, Y.K. Mishra, J. Seidel, Nanotechnology 28, 405701 (2017) CrossRefGoogle Scholar
  19. 19.
    N. Faraji, C. Ulrich, N. Wolff, L. Kienle, R. Adelung, Y.K. Mishra, J. Seidel, Adv. Electron. Mater. 2, 1600138 (2016) CrossRefGoogle Scholar
  20. 20.
    S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C. Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, J.W. Ager III, L.W. Martin, R. Ramesh, Nat. Nanotechnol. 5, 143 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    J.Y. Wang, G. Liu, D. Sando, V. Nagarajan, J. Seidel, Appl. Phys. Lett. 111, 092902 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    J. Seidel, L.M. Eng, Curr. Appl. Phys. 14, 1083 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S. Cheong, Science 324, 63 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    P.S. Brody, Ferroelectric photovoltaic method and apparatus for transferring information, US Patent US4103341A, 1974 Google Scholar
  25. 25.
    S. Thakoor, A.P. Thakoor, Thin film ferroelectric electro-optic memory, US Patent US5206829A, 1990 Google Scholar
  26. 26.
    Y. Bai, T. Siponkoski, J. Perantie, H. Jantunen, J. Juuti, Appl. Phys. Lett. 110, 063903 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Bai, P. Tofel, J. Palosaari, H. Jantunen, J. Juuti, Adv. Mater. 29, 1700767 (2017) CrossRefGoogle Scholar
  28. 28.
    Y. Bai, Energy harvesters capable of simultaneously converting visible light, heat and kinetic energy into electricity based on only one energy conversion material and its fabrication method, Patent application Google Scholar
  29. 29.
    H. Birol, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 88, 1754 (2005) CrossRefGoogle Scholar
  30. 30.
    H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006) CrossRefGoogle Scholar
  31. 31.
    Q. Ma, B. Wan, L. Cheng, S. Liu, F. Liu, J. Electroceram. 36, 30 (2016) CrossRefGoogle Scholar
  32. 32.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005) CrossRefGoogle Scholar
  33. 33.
    H. Ogawa, D. Iida, S. Takahashi, T. Moriyama, A. Kan, Ferroelectrics 497, 52 (2016) CrossRefGoogle Scholar
  34. 34.
    S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    W. Zhou, H. Deng, P. Yang, J. Chu, Appl. Phys. Lett. 105, 111904 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    E. Irle, R. Blachnik, B. Gather, Thermochim. Acta 179, 157 (1991) CrossRefGoogle Scholar
  37. 37.
    A.B. Haugen, G.H. Olsen, F. Madaro, M.I. Morozov, G. Tutuncu, J.L. Jones, T. Grande, M. Einarsrud, J. Am. Ceram. Soc. 97, 3818 (2014) CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5, 6569 (2017) CrossRefGoogle Scholar
  39. 39.
    V. Vivekananthan, N.R. Alluri, Y. Purusothaman, A. Chandrasekhar, S. Kim, Nanoscale 9, 15122 (2017) CrossRefGoogle Scholar
  40. 40.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008) CrossRefGoogle Scholar
  41. 41.
    M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392 (2015) CrossRefGoogle Scholar
  42. 42.
    M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of OuluOuluFinland
  2. 2.Ministry-province jointly-constructed cultivation base for state key laboratory of processing for non-ferrous metal and featured materials, Key laboratory of new processing technology for non-ferrous metal and materials ministry of education, College of Materials Science and Engineering, Guilin University of TechnologyGuilinP.R. China

Personalised recommendations