The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2675–2687 | Cite as

Surface tension and domain growth in nonuniform electric fields

  • Jennifer Galanis
  • Yoav TsoriEmail author
Regular Article
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications


We look at the surface tension in a binary mixture of two dielectric liquids placed inside a concentric capacitor. This is a model for systems with long range electrostatic forces lacking translational symmetry. For an initially homogeneous mixture above the bulk binodal curve, when the potential across the cylinders is small, smooth composition variations exist. When the voltage exceeds a critical value, however, there is a demixing transition whereby the more polar mixture component is found near the inner walls and the less polar liquid migrates to the outer boundary. We further look at the interface and calculate its location as a function of the system parameters. This allows us to calculate the surface tension. We then extend these to the dynamical evolution of the demixing phase transition. We define the surface tension in a way which is valid for slow dynamics, that is, late-time relaxation close to equilibrium. Contrary to infinite (bulk) systems, the surface tension depends on the location of the interface. We find that its value can increase or decrease with interface location, and point out that this implies a new type of interfacial instability where the field stabilizes a smooth interface and surface tension destabilizes it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Evans, H. Wennerström, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (Wiley-, 1999) Google Scholar
  2. 2.
    Y. Tsori, Rev. Mod. Phys. 81, 1471 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, 1978) Google Scholar
  4. 4.
    M.R. Moldover, J.V. Sengers, R.V. Gammon, R.J. Hocken, Rev. Mod. Phys. 51, 79 (1979) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Tsori, F. Tournilhac, L. Leibler, Nature 430, 544 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Tsori, L. Leibler, Proc. Natl. Acad. Sci. U.S.A. 104, 7348 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    S. Samin, Y. Tsori, C. Holm, Phys. Rev. E 87, 052128 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    J. Galanis, Y. Tsori, Phys. Rev. E 88, 012304 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Tsori, L. Leibler, Phys. Rev. E 71, 032101 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, 1989) Google Scholar
  11. 11.
    K. Amundson, E. Helfand, D.D. Davis, X. Quan, S.S. Patel, S.D. Smith, Macromolecules 24, 6546 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    J. Galanis, Y. Tsori, J. Chem. Phys. 141, 214506 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    J. Galanis, Y. Tsori, J. Chem. Phys. 140, 124505 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes (Westview Press, 2003) Google Scholar
  15. 15.
    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977) ADSCrossRefGoogle Scholar
  16. 16.
    A. Bray, Adv. Phys. 51, 481 (2002) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, 2004) Google Scholar
  18. 18.
    A. Onuki, Physica A 217, 38 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    S. Herminghaus, Phys. Rev. Lett. 83, 2359 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    Z. Lin, T. Kerle, S.M. Baker, D.A. Hoagland, E. Schäffer, U. Steiner, T.P. Russell, J. Chem. Phys. 114, 2377 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Europhys. Lett. 53, 518 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations