Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 7, pp 1647–1657 | Cite as

Two-degree-of-freedom velocity-amplified vibrational energy harvester for human motion applications

  • Valeria NicoEmail author
  • Jeff Punch
Regular Article
Part of the following topical collections:
  1. Energy Harvesting and Applications

Abstract

Conventional vibrational energy harvesters (VEHs) are generally based on a linear mass-spring oscillator model that features narrow bandwidth and high resonant frequencies at small scales. To overcome these limitations, a two-degree-of-freedom (2-Dof) velocity-amplified VEH was developed. The harvester comprises two masses, relatively oscillating one inside the other, between four sets of magnetic springs. Impacts between the two masses are allowed, and momentum is transferred from the larger outer mass to the smaller inner mass, thereby providing velocity amplification. Electromagnetic transduction was chosen because it can be easily implemented in a velocity-amplified VEH. The harvester was tested with harmonic excitation of different amplitudes and two peaks of similar heights were observed at arms = 0.6 g, resulting in a −3 dB bandwidth of 10 Hz. The VEH was also tested under human motion and at a running speed of 10 km/h the harvester generated P = 0.44 mW, a power level that could be accumulated in a storage medium over time and used for powering wireless sensor nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Smith, Will wearable technology destroy advances in recycling? – call2recycle, unitedstates (2018), available at https://www.call2recycle.org/will-wearable-technology-destroy-advances-in-recycling/
  2. 2.
    A. Dewan, S.U. Ay, M.N. Karim, H. Beyenal, J. Power Sources 245, 129 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    T. O’Donnell, C. Saha, S. Beeby, J. Tudor, Microsyst. Technol. 13, 1637 (2007) CrossRefGoogle Scholar
  4. 4.
    I. Neri, F. Travasso, R. Mincigrucci, H. Vocca, F. Orfei, L. Gammaitoni, J. Intell. Mater. Syst. Struct. 23, 2095 (2012) CrossRefGoogle Scholar
  5. 5.
    J. Cao, W. Wang, S. Zhou, D.J. Inman, J. Lin, Appl. Phys. Lett. 107, 143904 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    S. Wei, H. Hu, S. He, Smart Mater. Struct. 22, 105020 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    P. Pillatsch, E.M. Yeatman, A.S. Holmes, Sens. Actuators A 206, 178 (2014) CrossRefGoogle Scholar
  8. 8.
    W. Wang, J. Cao, N. Zhang, J. Lin, W.H. Liao, Energy Convers. Manag. 132, 189 (2017) CrossRefGoogle Scholar
  9. 9.
    M.A. Halim, H. Cho, J.Y. Park, Energy Convers. Manag. 106, 393 (2015) CrossRefGoogle Scholar
  10. 10.
    K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, Y. Manoli, Smart Mater. Struct. 24, 025029 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    B.J. Bowers, D.P. Arnold, J. Micromech. Microeng. 19, 094008 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    V. Nico, E. Boco, R. Frizzell, J. Punch, Appl. Phys. Lett. 108, 013902 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    V. Nico, R. Frizzell, J. Punch, Smart Mater. Struct. 26, 045029 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    D. Zhu, S. Beeby, J. Tudor, N. Harris, Smart Mater. Struct. 21, 075020 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    X. Tang, T. Lin, L. Zuo, IEEE/ASME Trans. Mechatronics 19, 615 (2014) CrossRefGoogle Scholar
  16. 16.
    Y. Kraftmakher, Eur. J. Phys. 28, 409 (2007) CrossRefGoogle Scholar
  17. 17.
    F. Cottone, R. Frizzell, S. Goyal, G. Kelly, J. Punch, J. Intell. Mater. Syst. Struct. 25, 443 (2014) CrossRefGoogle Scholar
  18. 18.
    Pervasive Nation. Pervasive Nation Ireland’s Internet of Things Testbed, available at https://connectcentre.ie/pervasive-nation/

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONNECT, Stokes Laboratories, Bernal Institute, University of LimerickLimerickIreland

Personalised recommendations