Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2603–2616 | Cite as

Controlling the interfacial and bulk concentrations of spontaneously charged colloids in non-polar media

  • Sariel Bier
  • Arik YochelisEmail author
Regular Article
  • 7 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

Stabilization and dispersion of electrical charge by colloids in non-polar media, such as nano-particles or inverse micelles, is significant for a variety of chemical and technological applications, ranging from drug delivery to e-ink. Many applications require knowledge about concentrations near the solid–liquid interface and the bulk, particularly in media where colloids exhibit spontaneous charging and change in chemical properties. By modification of the mean field equations to include the finite size effects that are typical in concentrated electrolytes along with disproportionation kinetics, and by considering high potentials, it is possible to evaluate the width of the condensed double layers near planar electrodes and the bulk concentrations of colloids. These quantities also provide an estimate of the minimum initial colloid concentration that is required to support electroneutrality in the dispersion bulk, and thus provide insights into the duration of quasi-steady state currents that have been observed in inverse micellar media.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Strubbe, K. Neyts, J. Phys.: Condens. Matter 29, 453003 (2017) ADSGoogle Scholar
  2. 2.
    J. Lyklema, Curr. Opin. Colloid Interf. Sci. 18, 116 (2013) CrossRefGoogle Scholar
  3. 3.
    A. Dukhin, S. Parlia, Curr. Opin. Colloid Interf. Sci. 18, 93 (2013) CrossRefGoogle Scholar
  4. 4.
    N. Bizmark, M.A. Ioannidis, Soft Matter 14, 6404 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    G.N. Smith, J. Eastoe, Phys. Chem. Chem. Phys. 15, 424 (2013) CrossRefGoogle Scholar
  6. 6.
    M. Prasad, F. Strubbe, F. Beunis, K. Neyts, Langmuir 32, 5796 (2016) CrossRefGoogle Scholar
  7. 7.
    M.F. Hsu, E.R. Dufresne, D.A. Weitz, Langmuir 21, 4881 (2005) CrossRefGoogle Scholar
  8. 8.
    K. Neyts, F. Beunis, F. Strubbe, M. Marescaux, B. Verboven, M. Karvar, A. Verschueren, J. Phys.: Condens. Matter 22, 494108 (2010) Google Scholar
  9. 9.
    F. Strubbe, A.R. Verschueren, L.J. Schlangen, F. Beunis, K. Neyts, J. Colloid Interf. Sci. 300, 396 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    J. Bikerman, Philos. Mag. 33, 384 (1942) CrossRefGoogle Scholar
  11. 11.
    I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    J. Cervera, J.A. Manzanares, S. Mafé, Phys. Chem. Chem. Phys. 3, 2493 (2001) CrossRefGoogle Scholar
  13. 13.
    A.G. Moreira, R.R. Netz, Eur. Phys. J. E 8, 33 (2002) CrossRefGoogle Scholar
  14. 14.
    J. Cervera, V. García-Morales, J. Pellicer, J. Phys. Chem. B 107, 8300 (2003) CrossRefGoogle Scholar
  15. 15.
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021503 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    P.M. Biesheuvel, J. Colloid Interf. Sci. 355, 389 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    M.M. Hatlo, R. Van Roij, L. Lue, Europhys. Lett. 97, 28010 (2012) CrossRefGoogle Scholar
  18. 18.
    A. Yochelis, J. Phys. Chem. C 118, 5716 (2014) CrossRefGoogle Scholar
  19. 19.
    E. Spruijt, P.M. Biesheuvel, J. Phys.: Condens. Matter 26, 075101 (2014) Google Scholar
  20. 20.
    I.D. Morrison, Colloids Surf. A 71, 1 (1993) CrossRefGoogle Scholar
  21. 21.
    B. Comiskey, J. Albert, H. Yoshizawa, J. Jacobson, Nature 394, 253 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Mori, Y. Okastu, Y. Tsujimoto, J. Nanopart. Res. 3, 219 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010) CrossRefGoogle Scholar
  24. 24.
    C.-X. Zhao, L. He, S.Z. Qiao, A.P. Middelberg, Chem. Eng. Sci. 66, 1463 (2011) CrossRefGoogle Scholar
  25. 25.
    J.-I. Yoshida, H. Kim, A. Nagaki, ChemSusChem 4, 331 (2011) CrossRefGoogle Scholar
  26. 26.
    M. Pileni, J. Phys. Chem. 97, 6961 (1993) CrossRefGoogle Scholar
  27. 27.
    A.M. Foudeh, T. Fatanat Didar, T. Veres, M. Tabrizian, Lab Chip 12, 3249 (2012) CrossRefGoogle Scholar
  28. 28.
    J.E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis, R.F. Ismagilov, J. Am. Chem. Soc. 132, 3128 (2010) CrossRefGoogle Scholar
  29. 29.
    L. Shang, Y. Cheng, Y. Zhao, Chem. Rev. 117, 7964 (2017) CrossRefGoogle Scholar
  30. 30.
    N. Gavish, D. Elad, A. Yochelis, J. Phys. Chem. Lett. 9, 36 (2018) CrossRefGoogle Scholar
  31. 31.
    S. Bier, N. Gavish, H. Uecker, A. Yochelis, Phys. Rev. E 95, 060201(R) (2017) ADSCrossRefGoogle Scholar
  32. 32.
    M. Islam, Phys. Scr. 70, 120 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    G.X. Cheng, F. Shen, L.F. Yang, L.R. Ma, Y. Tang, K. De Yao, P.C. Sun, Mater. Chem. Phys. 56, 97 (1998) CrossRefGoogle Scholar
  34. 34.
    Y. Feldman, A. Puzenko, Y. Ryabov, Chem. Phys. 284, 139 (2002) CrossRefGoogle Scholar
  35. 35.
    R. Ganguly, N. Choudhury, J. Colloid Interf. Sci. 372, 45 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    J. Israelachvili, Intermolecular and Surface Forces (Elsevier Science, 2015) Google Scholar
  37. 37.
    N. Gavish, K. Promislow, Phys. Rev. E 94, 012611 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    N. Gavish, I. Versano, A. Yochelis, SIAM J. Appl. Dyn. Syst. 16, 1946 (2017) MathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Zhao, Phys. Rev. E 84, 051504 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    A. Yochelis, Phys. Chem. Chem. Phys. 16, 2836 (2014) CrossRefGoogle Scholar
  41. 41.
    F. Strubbe, M. Prasad, F. Beunis, J. Phys. Chem. B 119, 1957 (2015) CrossRefGoogle Scholar
  42. 42.
    R.M. Adar, T. Markovich, D. Andelman, J. Chem. Phys. 146, 194904 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Gebbie, M. Valtiner, X. Banquy, E.T. Fox, W.A. Henderson, J.N. Israelachvili, Proc. Natl. Acad. Sci. USA 110, 9674 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    A.A. Lee, D. Vella, S. Perkin, A. Goriely, J. Phys. Chem. Lett. 6, 159 (2014) CrossRefGoogle Scholar
  45. 45.
    B. Kirchner, F. Malberg, D.S. Firaha, O. Hollóczki, J. Phys.: Condens. Matter 27, 463002 (2015) Google Scholar
  46. 46.
    P.G. Molina, J.J. Silber, N.M. Correa, L. Sereno, J. Phys. Chem. C 111, 4269 (2007) CrossRefGoogle Scholar
  47. 47.
    K. Tonova, Z. Lazarova, Biotechnol. Adv. 26, 516 (2008) CrossRefGoogle Scholar
  48. 48.
    V. Vanag, I. Epstein, in Self-Organized Morphology in Nanostructured Materials (Springer, 2008), pp. 89–113 Google Scholar
  49. 49.
    B. Baruah, J.M. Roden, M. Sedgwick, N.M. Correa, D.C. Crans, N.E. Levinger, J. Am. Chem. Soc. 128, 12758 (2006) CrossRefGoogle Scholar
  50. 50.
    A.P. dos Santos, A. Bakhshandeh, A. Diehl, Y. Levin, Soft Matter 12, 8528 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Solar Energy and Environmental PhysicsBlaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer CampusMidreshet Ben-GurionIsrael
  2. 2.Department of PhysicsBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations