Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2659–2673 | Cite as

Localization of current oscillations and synchronization patterns in microchip-based dual electrode flow cell without resistance balancing

  • Yifan Liu
  • István Z. KissEmail author
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

The spatiotemporal patterns formed in a two-electrode cell are investigated with oscillatory nickel electrodissolution in a microfluidic flow channel. Because the distances of the two working electrodes to the reference/counter electrodes at the end of the flow channel are different, there is an underlying dynamical heterogeneity that occurs in the form of different solution resistance. When the electrodes are placed far apart, due to the large heterogeneity, localized current oscillation on upstream or downstream electrode is observed. It is found that the other confounding factor in the generated patterns is the electrical coupling strength, that can be tuned by the distance between the electrodes. As the distance is increased (and the coupling strength is decreased), a transition from (nearly) in-phase synchronized oscillations through no synchrony to anti-phase current oscillations occurs. The localization of oscillatory behavior is explained with a two-parameter stability analysis by a bifurcation diagram of a single electrode. An ordinary differential equation model is derived to predict oscillatory patterns at different placement and all experimental findings can be reproduced. The results thus demonstrate the use of coupled ordinary differential equations modeling approach to the description of self-organized temporal and spatial features of the micro-scale electrochemical system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Newman, Ind. Eng. Chem. 60, 12 (1968) CrossRefGoogle Scholar
  2. 2.
    K. Krischer, in Modern Aspects of Electrochemistry, edited by B.E. Conway, J.O.M. Bockris, R.E. White (Springer, Boston, 1999), Vol. 32, p. 1 Google Scholar
  3. 3.
    I.Z. Kiss, T. Nagy, V. Gáspár, in Solid State Electrochemistry II, edited by V.V. Kharton (Wiley-, Weinheim, 2011), p. 125 Google Scholar
  4. 4.
    M. Orlik, Self-Organization in Electrochemical Systems I: General Principles of Self-organization. Temporal Instabilities, 1st edn. (Springer-Verlag, Berlin, 2012) Google Scholar
  5. 5.
    P. Russell, J. Newman, J. Electrochem. Soc. 134, 1051 (1987) CrossRefGoogle Scholar
  6. 6.
    J. Christoph, M. Eiswirth, Chaos 12, 215 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    K. Krischer, H. Varela, Handbook of Fuel Cells, edited by W. Vielstich, A. Lamm, H.A. Gasteiger (John Wiley & Sons, Chichester, 2010) Google Scholar
  8. 8.
    M. Orlik, Self-Organization in Electrochemical Systems II: Spatiotemporal Patternsand Control of Chaos, 1st edn. (Springer-Verlag, Berlin, 2012) Google Scholar
  9. 9.
    J.M. Cruz, M. Rivera, P. Parmananda, Phys. Rev. E 75, 035201 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Miyakita, S. Nakabayashi, A. Karantonis, Phys. Rev. E 71, 056207 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Phys. Rev. Lett. 94, 248301 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A. Karantonis, M. Pagitsas, Y. Miyakita, S. Nakabayashi, Electrochim. Acta 50, 5056 (2005) CrossRefGoogle Scholar
  13. 13.
    A.S. Mikhailov, D.H. Zanette, Y.M. Zhai, I.Z. Kiss, J.L. Hudson, Proc. Natl. Acad. Sci. U.S.A. 101, 10890 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    A. Karantonis, M. Pagitsas, Y. Miyakita, S. Nakabayashi, J. Phys. Chem. B 108, 5836 (2004) CrossRefGoogle Scholar
  15. 15.
    A. Karantonis, M. Pagitsas, Y. Miyakita, S. Nakabayashi, J. Phys. Chem. B 107, 14622 (2003) CrossRefGoogle Scholar
  16. 16.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Science 296, 1676 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    W. Wang, I.Z. Kiss, J.L. Hudson, Chaos 10, 248 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    I.Z. Kiss, W. Wang, J.L. Hudson, J. Phys. Chem. B 103, 11433 (1999) CrossRefGoogle Scholar
  19. 19.
    Y. Mukouyama, H. Hommura, T. Matsuda, S. Yae, Y. Nakato, Chem. Lett. 25, 463 (1996) CrossRefGoogle Scholar
  20. 20.
    I.Z. Kiss, V. Gaspar, J. Hudson, J. Phys. Chem. B 104, 7554 (2000) CrossRefGoogle Scholar
  21. 21.
    I.Z. Kiss, C.G. Rusin, H. Kori, J.L. Hudson, Science 316, 1886 (2007) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Bozdech, Y. Biecher, E.R. Savinova, R. Schuster, K. Krischer, A. Bonnefont, Chaos 28, 045113 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001) Google Scholar
  24. 24.
    O. Ordeig, J. del Campo, F.X. Muñoz, C.E. Banks, R.G. Compton, Electroanalysis 19, 1973 (2007) CrossRefGoogle Scholar
  25. 25.
    C. Amatore, N. Da Mota, C. Lemmer, C. Pebay, C. Sella, L. Thouin, Anal. Chem. 80, 9483 (2008) CrossRefGoogle Scholar
  26. 26.
    A.G. Cioffi, R.S. Martin, I.Z. Kiss, J. Electroanal. Chem. 659, 92 (2011) CrossRefGoogle Scholar
  27. 27.
    I.Z. Kiss, N. Munjal, R.S. Martin, Electrochim. Acta 55, 395 (2009) CrossRefGoogle Scholar
  28. 28.
    Y. Jia, I.Z. Kiss, J. Phys. Chem. C 116, 19290 (2012) CrossRefGoogle Scholar
  29. 29.
    A. Bîrzu, J. Coleman, I.Z. Kiss, J. Electroanal. Chem. 726, 27 (2014) CrossRefGoogle Scholar
  30. 30.
    Y. Jia, I.Z. Kiss, Sci. Rep. 7, 46027 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    A. Bîrzu, Y. Jia, V. Sankuratri, Y. Liu, I.Z. Kiss, ChemPhysChem 16, 555 (2015) CrossRefGoogle Scholar
  32. 32.
    A. Birzu, I.Z. Kiss, J. Solid State Electrochem. 19, 3229 (2015) CrossRefGoogle Scholar
  33. 33.
    R.S. Martin, A.J. Gawron, S.M. Lunte, C.S. Henry, Anal. Chem. 72, 3196 (2000) CrossRefGoogle Scholar
  34. 34.
    D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998) CrossRefGoogle Scholar
  35. 35.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, 1st edn. (Cambridge University Press, Cambridge, 2001) Google Scholar
  36. 36.
    D. Haim, O. Lev, L.M. Pismen, M. Sheintuch, J. Phys. Chem. 96, 2676 (1992) CrossRefGoogle Scholar
  37. 37.
    B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (SIAM, Philadelphia, 2002) Google Scholar
  38. 38.
    E.J. Doedel, R.C. Paffenroth, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B.E. Oldeman, B. Sandstede, X. Wang, AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with HomCont). Technical Report, California Institute of Technology, 2001 Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySaint Louis UniversitySt. LouisUSA

Personalised recommendations