Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2641–2658 | Cite as

Electro-oxidation of p-silicon in fluoride-containing electrolyte: a physical model for the regime of negative differential resistance

  • Munir M. SalmanEmail author
  • Maximilian Patzauer
  • Dominique Koster
  • Fabio La Mantia
  • Katharina Krischer
Regular Article
  • 9 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

When Si is anodically oxidized in a fluoride containing electrolyte, an oxide layer is grown. Simultaneously, the layer is etched by the fluoride containing electrolyte. The resulting stationary state exhibits a negative slope of the current–voltage characteristics in a certain range of applied voltage. We propose a physical model that reproduces this negative slope. In particular, our model assumes that the oxide layer consists of both partially and fully oxidized Si and that the etch rate depends on the effective degree of oxidation. Finally, we show that our simulations are in good agreement with measurements of the current–voltage characteristics, the oxide layer thickness, the dissolution valence, and the impedance spectra of the electrochemical system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.N. Chazalviel, Electrochim. Acta 37, 865 (1992) CrossRefGoogle Scholar
  2. 2.
    H. Lewerenz, M. Aggour, J. Electroanal. Chem. 351, 159 (1993) CrossRefGoogle Scholar
  3. 3.
    V. Lehmann, J. Electrochem. Soc. 143, 1313 (1996) CrossRefGoogle Scholar
  4. 4.
    H. Föll, M. Leisner, A. Cojocaru, J. Carstensen, Electrochim. Acta 55, 327 (2009) CrossRefGoogle Scholar
  5. 5.
    K. Schönleber, K. Krischer, ChemPhysChem 13, 2989 (2012) CrossRefGoogle Scholar
  6. 6.
    I. Miethe, V. García-Morales, K. Krischer, Phys. Rev. Lett. 102, 194101 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    I. Miethe, K. Krischer, J. Electroanal. Chem. 666, 1 (2012) CrossRefGoogle Scholar
  8. 8.
    J. Proost, F. Blaffart, S. Turner, H. Idrissi, ChemPhysChem 15, 3116 (2014) CrossRefGoogle Scholar
  9. 9.
    X.G. Zhang, Electrochemistry of silicon and its oxide (Springer, NY, 2001) Google Scholar
  10. 10.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    L. Schmidt, K. Schönleber, K. Krischer, V. García-Morales, Chaos 24, 013102 (2014) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Schönleber, C. Zensen, A. Heinrich, K. Krischer, New J. Phys. 16, 063024 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    L. Schmidt, K. Krischer, Chaos 25, 064401 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber, K. Krischer, Electrochim. Acta 246, 315 (2017) CrossRefGoogle Scholar
  15. 15.
    K. Schönleber, M. Patzauer, K. Krischer, Electrochim. Acta 210, 346 (2016) CrossRefGoogle Scholar
  16. 16.
    C. Zensen, K. Schönleber, F. Kemeth, K. Krischer, J. Phys. Chem. C 118, 24407 (2014) CrossRefGoogle Scholar
  17. 17.
    J.N. Chazalviel, F. Ozanam, J. Electrochem. Soc. 139, 2501 (1992) CrossRefGoogle Scholar
  18. 18.
    A. Uhlir, Bell Labs Techn. J. 35, 333 (1956) CrossRefGoogle Scholar
  19. 19.
    K. Osseo-Asare, D. Wei, K.K. Mishra, J. Electrochem. Soc. 143, 749 (1996) CrossRefGoogle Scholar
  20. 20.
    J.N. Chazalviel, M. Etman, F. Ozanam, J. Electroanal. Chem. Interfacial Electrochem. 297, 533 (1991) CrossRefGoogle Scholar
  21. 21.
    M. Eddowes, J. Electroanal. Chem. Interfacial Electrochem. 280, 297 (1990) CrossRefGoogle Scholar
  22. 22.
    D. Blackwood, A. Borazio, R. Greef, L. Peter, J. Stumper, Electrochim. Acta 37, 889 (1992) CrossRefGoogle Scholar
  23. 23.
    R. Cheggou, A. Kadoun, N. Gabouze, F. Ozanam, J.N. Chazalviel, Electrochim. Acta 54, 3053 (2009) CrossRefGoogle Scholar
  24. 24.
    R. Memming, G. Schwandt, Surf. Sci. 4, 109 (1966) ADSCrossRefGoogle Scholar
  25. 25.
    S. Cattarin, I. Frateur, M. Musiani, B. Tribollet, J. Electrochem. Soc. 147, 3277 (2000) CrossRefGoogle Scholar
  26. 26.
    A. Battistel, G. Du, F. La Mantia, Electroanalysis 28, 2346 (2016) CrossRefGoogle Scholar
  27. 27.
    D. Koster, G. Du, A. Battistel, F. La Mantia, Electrochim. Acta 246, 553 (2017) CrossRefGoogle Scholar
  28. 28.
    D. Koster, M. Patzauer, M.M. Salman, A. Battistel, K. Krischer, F. La Mantia, ChemElectroChem 5, 1548 (2018) CrossRefGoogle Scholar
  29. 29.
    A. Comsol, Comsol reference manual (version 5.2 a), Version September, 2016, pp. 1–1378 Google Scholar
  30. 30.
    Y.P. Lin, J.G. Hwu, J. Vac. Sci. Technol. A, Vac. Surf. Films 22, 2265 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    H. Hasegawa, S. Arimoto, J. Nanjo, H. Yamamoto, H. Ohno, J. Electrochem. Soc. 135, 424 (1988) CrossRefGoogle Scholar
  32. 32.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices (John Wiley & Sons, NJ, 2006) Google Scholar
  33. 33.
    MATLAB, Version 9.3.0 (R2017b) (The MathWorks Inc., Natick, Massachusetts, 2017) Google Scholar
  34. 34.
    F. Ozanam, J.N. Chazalviel, A. Radi, M. Etman, J. Electrochem. Soc. 139, 2491 (1992) CrossRefGoogle Scholar
  35. 35.
    M.T.M. Koper, Far-from-equilibrium phenomena in electrochemical systems: instabilities, oscillations and chaos (Universiteit Utrecht, Faculteit Scheikunde, 1994) Google Scholar
  36. 36.
    D.R. Turner, J. Electrochem. Soc. 105, 402 (1958) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technische Universität München, Physik DepartmentGarchingGermany
  2. 2.Universität Bremen, Fachgebiet Energiespeicher- und EnergiewandlersystemeBremenGermany

Personalised recommendations