Advertisement

Unsteady-state particle-size distributions at the coagulation stage of phase transformations

  • Dmitri V. AlexandrovEmail author
  • Alexandr A. Ivanov
  • Irina V. Alexandrova
Regular Article
  • 9 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

In this paper, a new analytical solution of nonstationary integro-differential coagulation equation, which describes the concluding stage of a phase transformation process in metastable liquids, is deduced. This solution takes into account the initial distribution function, which is found on the basis of previously developed theory for the intermediate stage. It is demonstrated that the derived particle-size distribution function representing a bell-shaped curve decreases with time and describes the long-term experimental data. The developed theoretical approach describes the transition of a phase transformation process from its intermediate stage to the stage of particle coagulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2008) Google Scholar
  2. 2.
    V.V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, Weinheim, 2009) Google Scholar
  3. 3.
    V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Springer, Berlin, 2014) Google Scholar
  4. 4.
    A. Ummadisingu, M. Grätzel, Sci. Adv. 4, e1701402 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    L. Wang, J. Li, S. Yang, C. Chen, H. Jin, X. Li, Sci. Rep. 8, 1135 (2018) ADSCrossRefGoogle Scholar
  6. 6.
    X. Jiang, Z. Ma, J. Yu, S. Ren, H. Yang, W. Li, J. Xu, L. Xu, K. Chen, X. Huang, D. Feng, Phys. Stat. Sol. A 213, 1878 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Alexandrov, I.G. Nizovtseva, Proc. R. Soc. A 470, 20130647 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    A.C. Zettlemoyer, Nucleation (Dekker, New York, 1969) Google Scholar
  10. 10.
    T.H. Zhang, X.Y. Liu, Angew. Chem. Int. Ed. 48, 1308 (2009) CrossRefGoogle Scholar
  11. 11.
    N.P. Balsara, C. Lin, B. Hammouda, Phys. Rev. Lett. 77, 3847 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    V.E. Guterman, L.N. Mironova, V.V. Ozeryanskaya, O.E. Saenko, Russ. J. Electrochem. 37, 57 (2001) CrossRefGoogle Scholar
  13. 13.
    C. Ratsch, J.A. Venables, J. Vacuum Sci. Technol. A 21, S96 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Barlow, J.K. Baird, C.-H. Su, J. Cryst. Growth 264, 417 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Barlow, J. Cryst. Growth 311, 2480 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    D.V. Alexandrov, A.P. Malygin, J. Phys. A: Math. Theor. 46, 455101 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Alexandrov, Phys. Lett. A 378, 1501 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    D.A. Barlow, J. Cryst. Growth 470, 8 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    E.V. Makoveeva, D.V. Alexandrov, Phil. Trans. R. Soc. A 376, 20170327 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    I.M. Lifshitz, V.V. Slyozov, Sov. Phys. JETP 8, 331 (1959) Google Scholar
  21. 21.
    I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961) ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Slezov, J. Phys. Chem. Solids 39, 367 (1978) ADSCrossRefGoogle Scholar
  23. 23.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981) Google Scholar
  24. 24.
    V.V. Slezov, V.V. Sagalovich, Sov. Phys. Usp. 30, 23 (1987) ADSCrossRefGoogle Scholar
  25. 25.
    D.V. Alexandrov, J. Phys. A: Math. Theor. 48, 035103 (2015) ADSCrossRefGoogle Scholar
  26. 26.
    D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    D.V. Alexandrov, J. Cryst. Growth 457, 11 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    A.V. Alyab’eva, Yu.A. Buyevich, V.V. Mansurov, J. Phys. II France 4, 951 (1994) CrossRefGoogle Scholar
  29. 29.
    D.V. Alexandrov, J. Phys.: Condens. Matter 28, 035102 (2016) ADSGoogle Scholar
  30. 30.
    J. Banasiak, W. Lamb, Proc. R. Soc. Edinburgh 136A, 1157 (2006) CrossRefGoogle Scholar
  31. 31.
    D. Broizat, Ann. I. H. Poincaré - AN 27, 809 (2010) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.K. Giri, J. Kumar, G. Warnecke, J. Math. Anal. Appl. 374, 71 (2011) MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Saha, J. Kumar, Z. Angew. Math. Phys. 66, 919 (2015) MathSciNetCrossRefGoogle Scholar
  34. 34.
    S.K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour (Wiley-, New York, 1977) Google Scholar
  35. 35.
    J.R. Hunt, J. Fluid Mech. 122, 169 (1982) ADSCrossRefGoogle Scholar
  36. 36.
    B. Liu, Y. Wang, M. Zhang, H. Zhang, Polymers 8, 55 (2016) CrossRefGoogle Scholar
  37. 37.
    D.V. Alexandrov, A.P. Malygin, Model. Simul. Mater. Sci. Eng. 22, 015003 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    D.V. Alexandrov, J. Phys. A: Math. Theor. 47, 125102 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    M. Marder, Phys. Rev. A 36, 858 (1987) ADSCrossRefGoogle Scholar
  40. 40.
    V.V. Mansurov, Mathl Comput. Modelling 14, 819 (1990) CrossRefGoogle Scholar
  41. 41.
    D.L. Aseev, D.V. Alexandrov, Int. J. Heat Mass Transfer 49, 4903 (2006) CrossRefGoogle Scholar
  42. 42.
    D.L. Aseev, D.V. Alexandrov, Dokl. Phys. 51, 291 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    V.S. Solomatov, D.J. Stevenson, J. Geophys. Res. 98, 5407 (1993) ADSCrossRefGoogle Scholar
  44. 44.
    Yu.A. Buyevich, A.O. Ivanov, Physica A 193, 221 (1993) ADSCrossRefGoogle Scholar
  45. 45.
    A.O. Ivanov, A.Yu. Zubarev, Physica A 251, 348 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    D.A. Barlow, J. Cryst. Growth 311, 2480 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Theoretical and Mathematical PhysicsLaboratory of Multi-Scale Mathematical Modeling, Ural Federal UniversityEkaterinburgRussia

Personalised recommendations