Advertisement

The pseudogap regime in the unitary Fermi gas

  • S. JensenEmail author
  • C. N. GilbrethEmail author
  • Y. AlhassidEmail author
Review
  • 218 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

We discuss the pseudogap regime in the unitary Fermi gas (UFG), with a particular emphasis on the auxiliary-field quantum Monte Carlo (AFMC) approach. We discuss possible signatures of the pseudogap, review experimental results, and survey analytic and quantum Monte Carlo techniques before focusing on AFMC calculations in the canonical ensemble. For the latter method, we discuss results for the heat capacity, condensate fraction, energy-staggering pairing gap, and spin susceptibility, and compare to experiment and results of other theoretical methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Randeria, N. Trivedi, A. Moreo, R.T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992) ADSGoogle Scholar
  2. 2.
    N. Trivedi, M. Randeria, Phys. Rev. Lett. 75, 312 (1995) ADSGoogle Scholar
  3. 3.
    M. Randeria, Nat. Phys. 6, 561 (2010) Google Scholar
  4. 4.
    Y. Nishida, H. Abuki, Phys. Rev. D 72, 096004 (2005) ADSGoogle Scholar
  5. 5.
    A. Adams, L.D. Carr, T. Schäfer, P. Steinberg, J.E. Thomas, N. J. Phys. 14, 115009 (2012) Google Scholar
  6. 6.
    S. Gandolfi, A. Gezerlis, J. Carlson, Ann. Rev. Nucl. Particle Sci. 65, 303 (2015) ADSGoogle Scholar
  7. 7.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) ADSGoogle Scholar
  8. 8.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008) ADSGoogle Scholar
  9. 9.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) ADSGoogle Scholar
  10. 10.
    T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999) ADSGoogle Scholar
  11. 11.
    E.J. Mueller, Rep. Prog. Phys. 80, 104401 (2017) ADSGoogle Scholar
  12. 12.
    S. Jensen, C.N. Gilbreth, Y. Alhassid, https://doi.org/arXiv:1801.06163 (2018)
  13. 13.
    Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412, 1 (2005) ADSGoogle Scholar
  14. 14.
    Q. Chen, J. Wang, Front. Phys. 9, 539 (2014) Google Scholar
  15. 15.
    Y. Castin, F. Werner, The Unitary Gas and its Symmetry Properties, in The BCS-BEC Crossover and the Unitary Fermi Gas, edited by W. Zwerger (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 127–191 Google Scholar
  16. 16.
    T. Busch, B.G. Englert, K. Rzażewski, M. Wilkens, Found. Phys. 28, 549 (1998) Google Scholar
  17. 17.
    F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012) ADSGoogle Scholar
  18. 18.
    L. Pricoupenko, Y. Castin, J. Phys. A: Math. Theor. 40, 12863 (2007) ADSGoogle Scholar
  19. 19.
    C.N. Gilbreth, Y. Alhassid, Phys. Rev. A 88, 063643 (2013) ADSGoogle Scholar
  20. 20.
    Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. Lett. 100, 230401 (2008) ADSGoogle Scholar
  21. 21.
    C.N. Gilbreth, Y. Alhassid, Phys. Rev. A 85, 033621 (2012) ADSGoogle Scholar
  22. 22.
    I. Stetcu, B.R. Barrett, U. van Kolck, J.P. Vary, Phys. Rev. A 76, 063613 (2007) ADSGoogle Scholar
  23. 23.
    A. Mukherjee, Y. Alhassid, Phys. Rev. A 88, 053622 (2013) ADSGoogle Scholar
  24. 24.
    A. Fetter, J.D. Walecka, Quantum theory of many-particle systems (McGraw-Hill, 1971) Google Scholar
  25. 25.
    R. Haussmann, M. Punk, W. Zwerger, Phys. Rev. A 80, 063612 (2009) ADSGoogle Scholar
  26. 26.
    P. Magierski, G. Wlazłowski, A. Bulgac, J.E. Drut, Phys. Rev. Lett. 103, 210403 (2009) ADSGoogle Scholar
  27. 27.
    A. Perali, F. Palestini, P. Pieri, G.C. Strinati, J.T. Stewart, J.P. Gaebler, T.E. Drake, D.S. Jin, Phys. Rev. Lett. 106, 060402 (2011) ADSGoogle Scholar
  28. 28.
    P. van Wyk, H. Tajima, R. Hanai, Y. Ohashi, Phys. Rev. A 93, 013621 (2016) ADSGoogle Scholar
  29. 29.
    M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012) ADSGoogle Scholar
  30. 30.
    J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003) ADSGoogle Scholar
  31. 31.
    A. Bohr, B. Mottelson, in Nuclear Structure (Benjamin, Reading, Massachusetts, 1969), Vol. I Google Scholar
  32. 32.
    Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 83, 4265 (1999) ADSGoogle Scholar
  33. 33.
    C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J.H. Denschlag, R. Grimm, Science 305, 1128 (2004) ADSGoogle Scholar
  34. 34.
    M. Greiner, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 94, 070403 (2005) ADSGoogle Scholar
  35. 35.
    J.P. Gaebler, J.T. Stewart, T.E. Drake, D.S. Jin, A. Perali, P. Pieri, G.C. Strinati, Nat. Phys. 6, 569 (2010) Google Scholar
  36. 36.
    S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, C. Salomon, Phys. Rev. Lett. 106, 215303 (2011) ADSGoogle Scholar
  37. 37.
    Y. Sagi, T.E. Drake, R. Paudel, R. Chapurin, D.S. Jin, Phys. Rev. Lett. 114, 075301 (2015) ADSGoogle Scholar
  38. 38.
    M. Ota, H. Tajima, R. Hanai, D. Inotani, Y. Ohashi, Phys. Rev. A 95, 053623 (2017) ADSGoogle Scholar
  39. 39.
    N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010) ADSGoogle Scholar
  40. 40.
    S. Nascimbène, N. Navon, K. Jiang, F. Chevy, C. Salomon, Nature 463, 1057 (2010) ADSGoogle Scholar
  41. 41.
    N. Navon, privatecommunication (2018) Google Scholar
  42. 42.
    D.M. Eagles, Phys. Rev. 186, 456 (1969) ADSGoogle Scholar
  43. 43.
    A.J. Leggett, in Modern trends in the theory of condensed matter (Springer, 1980), pp. 13–27 Google Scholar
  44. 44.
    P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985) ADSGoogle Scholar
  45. 45.
    C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993) ADSGoogle Scholar
  46. 46.
    O. DeWolfe, O. Henriksson, C. Wu, Ann. Phys. 387, 75 (2017) ADSGoogle Scholar
  47. 47.
    K.B. Gubbels, H.T.C. Stoof, Phys. Rev. A 84, 013610 (2011) ADSGoogle Scholar
  48. 48.
    T. Debelhoir, N. Dupuis, Phys. Rev. A 93, 023642 (2016) ADSGoogle Scholar
  49. 49.
    E.V. Doggen, J.J. Kinnunen, Sci. Rep. 5, 9539 (2015) ADSGoogle Scholar
  50. 50.
    A. Perali, P. Pieri, G.C. Strinati, C. Castellani, Phys. Rev. B 66, 024510 (2002) ADSGoogle Scholar
  51. 51.
    S. Tsuchiya, R. Watanabe, Y. Ohashi, Phys. Rev. A 80, 033613 (2009) ADSGoogle Scholar
  52. 52.
    G.C. Strinati, Pairing Fluctuations Approach to the BCS–BEC Crossover, in The BCS-BEC Crossover and the Unitary Fermi Gas, edited by W. Zwerger (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 99–126 Google Scholar
  53. 53.
    M.D. Reichl, E.J. Mueller, Phys. Rev. A 91, 043627 (2015) ADSGoogle Scholar
  54. 54.
    T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 86, 043622 (2012) ADSGoogle Scholar
  55. 55.
    H. Tajima, T. Kashimura, R. Hanai, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 033617 (2014) ADSGoogle Scholar
  56. 56.
    L. Pisani, A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. B 97, 014528 (2018) ADSGoogle Scholar
  57. 57.
    K. Levin, Q. Chen, C.C. Chien, Y. He, Ann. Phys. 325, 233 (2010) ADSGoogle Scholar
  58. 58.
    C.C. Chien, H. Guo, Y. He, K. Levin, Phys. Rev. A 81, 023622 (2010) ADSGoogle Scholar
  59. 59.
    R. Haussmann, Z. Phys. B: Condens. Matter 91, 291 (1993) ADSGoogle Scholar
  60. 60.
    R. Haussmann, Phys. Rev. B 49, 12975 (1994) ADSGoogle Scholar
  61. 61.
    R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007) ADSGoogle Scholar
  62. 62.
    T. Enss, R. Haussmann, Phys. Rev. Lett. 109, 195303 (2012) ADSGoogle Scholar
  63. 63.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. A 78, 023625 (2008) ADSGoogle Scholar
  64. 64.
    J. Carlson, S. Reddy, Phys. Rev. Lett. 95, 060401 (2005) ADSGoogle Scholar
  65. 65.
    J. Carlson, S. Gandolfi, K.E. Schmidt, S. Zhang, Phys. Rev. A 84, 061602 (2011) ADSGoogle Scholar
  66. 66.
    S. Gandolfi, K.E. Schmidt, J. Carlson, Phys. Rev. A 83, 041601 (2011) ADSGoogle Scholar
  67. 67.
    J. Carlson, S. Reddy, Phys. Rev. Lett. 100, 150403 (2008) ADSGoogle Scholar
  68. 68.
    M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. Lett. 106, 235303 (2011) ADSGoogle Scholar
  69. 69.
    X. Li, J.c.v. Kolorenč, L. Mitas, Phys. Rev. A 84, 023615 (2011) ADSGoogle Scholar
  70. 70.
    M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. A 86, 053603 (2012) ADSGoogle Scholar
  71. 71.
    L.M. Schonenberg, G.J. Conduit, Phys. Rev. A 95, 013633 (2017) ADSGoogle Scholar
  72. 72.
    E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006) ADSGoogle Scholar
  73. 73.
    O. Goulko, M. Wingate, Phys. Rev. A 82, 053621 (2010) ADSGoogle Scholar
  74. 74.
    O. Goulko, M. Wingate, Phys. Rev. A 93, 053604 (2016) ADSGoogle Scholar
  75. 75.
    Y. Sagi, T.E. Drake, R. Paudel, D.S. Jin, Phys. Rev. Lett. 109, 220402 (2012) ADSGoogle Scholar
  76. 76.
    A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005) ADSGoogle Scholar
  77. 77.
    E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, N. J. Phys. 8, 153 (2006) Google Scholar
  78. 78.
    N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 99, 250201 (2007) ADSGoogle Scholar
  79. 79.
    N. Prokof’ev, B. Svistunov, Phys. Rev. B 77, 020408 (2008) ADSGoogle Scholar
  80. 80.
    K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, M. Zwierlein, Nat. Phys. 8, 366 (2012) Google Scholar
  81. 81.
    R. Rossi, T. Ohgoe, E. Kozik, N. Prokof’ev, B. Svistunov, K. Van Houcke, F. Werner, Phys. Rev. Lett. 121, 130406 (2018) ADSGoogle Scholar
  82. 82.
    R. Blankenbecler, D.J. Scalapino, R.L. Sugar, Phys. Rev. D 24, 2278 (1981) ADSGoogle Scholar
  83. 83.
    S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B 40, 506 (1989) ADSGoogle Scholar
  84. 84.
    R.L. Stratonovich, Dokl. Akad. Nauk SSSR [Sov. Phys. - Dokl.] 115, 1097 (1957) Google Scholar
  85. 85.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959) ADSGoogle Scholar
  86. 86.
    P. Magierski, G. Wlazłowski, A. Bulgac, Phys. Rev. Lett. 107, 145304 (2011) ADSGoogle Scholar
  87. 87.
    G. Wlazłowski, P. Magierski, J.E. Drut, A. Bulgac, K.J. Roche, Phys. Rev. Lett. 110, 090401 (2013) ADSGoogle Scholar
  88. 88.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006) ADSGoogle Scholar
  89. 89.
    M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998) ADSGoogle Scholar
  90. 90.
    M.H. Hettler, M. Mukherjee, M. Jarrell, H.R. Krishnamurthy, Phys. Rev. B 61, 12739 (2000) ADSGoogle Scholar
  91. 91.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005) ADSGoogle Scholar
  92. 92.
    S.Q. Su, D.E. Sheehy, J. Moreno, M. Jarrell, Phys. Rev. A 81, 051604 (2010) ADSGoogle Scholar
  93. 93.
    G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, Phys. Rev. C 48, 1518 (1993) ADSGoogle Scholar
  94. 94.
    Y. Alhassid, D.J. Dean, S.E. Koonin, G. Lang, W.E. Ormand, Phys. Rev. Lett. 72, 613 (1994) ADSGoogle Scholar
  95. 95.
    S. Koonin, D. Dean, K. Langanke, Phys. Rep. 278, 1 (1997) ADSGoogle Scholar
  96. 96.
    Y. Alhassid, Int. J. Mod. Phys. B 15, 1447 (2001) ADSGoogle Scholar
  97. 97.
    Y. Alhassid, Auxiliary-field quantum Monte Carlo methods in nuclei, in Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: a Symmetry-Guided Perspective, edited by K.D. Launey (World Scientific, Singapore, 2017), pp. 267–298 Google Scholar
  98. 98.
    Z. Wang, F.F. Assaad, F. Parisen Toldin, Phys. Rev. E 96, 042131 (2017) ADSGoogle Scholar
  99. 99.
    C.N. Gilbreth, Ph.D. thesis, Yale University, 2013 Google Scholar
  100. 100.
    C. Özen, N.T. Zinner, Eur. Phys. J. D 68, 225 (2014) ADSGoogle Scholar
  101. 101.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) ADSGoogle Scholar
  102. 102.
    W.K. Hastings, Biometrika 57, 97 (1970) MathSciNetGoogle Scholar
  103. 103.
    W.E. Ormand, D.J. Dean, C.W. Johnson, G.H. Lang, S.E. Koonin, Phys. Rev. C 49, 1422 (1994) ADSGoogle Scholar
  104. 104.
    C.N. Gilbreth, Y. Alhassid, Comput. Phys. Commun. 188, 1 (2015) ADSGoogle Scholar
  105. 105.
    C.N. Yang, Rev. Mod. Phys. 34, 694 (1962) ADSGoogle Scholar
  106. 106.
    K. Binder, Phys. Rev. Lett. 47, 693 (1981) ADSGoogle Scholar
  107. 107.
    N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, Advanced Book Program, Reading, Mass., 1992) Google Scholar
  108. 108.
    S. Liu, Y. Alhassid, Phys. Rev. Lett. 87, 022501 (2001) ADSGoogle Scholar
  109. 109.
    W. Zwerger, Strongly Interacting Fermi Gases, in Proceedings of the International School of Physics “Enrico Fermi”- Course 191 “Quantum Matter at Ultralow Temperatures”, edited by M. Inguscio, W. Ketterle, S. Stringari, G. Roati (IOS Press, Amsterdam, SIF Bologna, 2016), pp. 63–142 Google Scholar
  110. 110.
    B. Frank, J. Lang, W. Zwerger, JETP 127, 812 (2018) ADSGoogle Scholar
  111. 111.
    A. Schirotzek, Y.I. Shin, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008) ADSGoogle Scholar
  112. 112.
    S. Hoinka, P. Dyke, M.G. Lingham, J.J. Kinnunen, G.M. Bruun, C.J. Vale, Nat. Phys. 13, 943 (2017) Google Scholar
  113. 113.
    F. Palestini, P. Pieri, G.C. Strinati, Phys. Rev. Lett. 108, 080401 (2012) ADSGoogle Scholar
  114. 114.
    P.A. Pantel, D. Davesne, M. Urban, Phys. Rev. A 90, 053629 (2014) ADSGoogle Scholar
  115. 115.
    B. Mukherjee, Z. Yan, P.B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, M.W. Zwierlein, Phys. Rev. Lett. 118, 123401 (2017) ADSGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Sloane Physics Laboratory, Yale UniversityNew HavenUSA
  2. 2.Institute for Nuclear Theory, Box 351550, University of WashingtonSeattleUSA

Personalised recommendations