Advertisement

Controllability of Hilfer fractional stochastic system with multiple delays and Poisson jumps

  • T. Sathiyaraj
  • P. BalasubramaniamEmail author
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Microscopic Dynamics, Chaos and Transport in Nonequilibrium Processes

Abstract

This paper introduces a notion of controllability for nonlinear Hilfer fractional stochastic system with multiple delays in control and Poisson jumps. A proper new series of sufficient conditions are derived for the considered system to be controllable by using fixed point technique, fractional calculus and stochastic analysis approach. The obtained result generalizes many results on controllability of stochastic systems and fractional stochastic systems. Finally, an example is provided to show the effectiveness of the achieved theoretical results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.F. Bohnenblust, S. Karlin, Ann. Math. Stud. 24, 155 (2016) Google Scholar
  2. 2.
    B. Bonilla, M. Rivero, L. Rodrguez-Germ, J.J. Trujillo, Appl. Math. Comput. 187, 79 (2007) MathSciNetGoogle Scholar
  3. 3.
    A.A. Chikriy, I.I. Matichin, J. Autom. Inf. Sci. 40, 1 (2008) Google Scholar
  4. 4.
    K.M. Furati, M.D. Kassim, N. Tatar, Comput. Math. Appl. 64, 1616 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    H.B. Gu, J.J. Trujillo, Appl. Math. Comput. 257, 344 (2015) MathSciNetGoogle Scholar
  6. 6.
    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000) Google Scholar
  7. 7.
    T.T. Hartley, C.F. Lorenzo, Nonlin. Dyn. 29, 201 (2002) CrossRefGoogle Scholar
  8. 8.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier Science Limited, Amsterdam, 2006) Google Scholar
  9. 9.
    J. Klamka, Tech. Sci. 55, 23 (2007) Google Scholar
  10. 10.
    N.I. Mahmudov, SIAM J. Cont. Optim. 42, 1604 (2003) CrossRefGoogle Scholar
  11. 11.
    N.I. Mahmudov, S. Zorlu, Int. J. Control 76, 95 (2003) CrossRefGoogle Scholar
  12. 12.
    X. Mao, Stochastic Differential Equations and Applications (Chichester, Oxford, 1997) Google Scholar
  13. 13.
    K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (Wiley-, New York, 1993) Google Scholar
  14. 14.
    M. Yang, Q.-R. Wang, Math. Methods Appl. Sci. 40, 1126 (2017) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order (Academic Press, New York, 1984) Google Scholar
  16. 16.
    I. Petrs, J. Electr. Eng. 53, 219 (2002) Google Scholar
  17. 17.
    I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, California, 1998) Google Scholar
  18. 18.
    Y. Ren, L. Chen, J. Math. Phys. 50, 147 (2009) Google Scholar
  19. 19.
    F.A. Rihan, C. Rajivganthi, P. Muthukumar, Discrete Dyn. Nat. Soc. 2017, 5394528 (2017) CrossRefGoogle Scholar
  20. 20.
    L. Ronghua, M. Hongbing, D. Yonghong, Appl. Math. Comput. 172, 584 (2006) MathSciNetGoogle Scholar
  21. 21.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in fractional calculus (Springer, Netherlands, 1993) Google Scholar
  22. 22.
    S.G. Samko, A.A. Kilbas, I. Maricev, Fractional integrals and derivatives; theory and applications (Gordon and Breach Science Publisher, 1993) Google Scholar
  23. 23.
    T. Sathiyaraj, P. Balasubramaniam, Eur. Phys. J. Special Topics 225, 83 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    T. Sathiyaraj, P. Balasubramaniam, ISA Trans. 82, 107 (2017) CrossRefGoogle Scholar
  25. 25.
    J. Sousa, C. Vanterler da, E. Capelas de Oliveira, Commun. Nonlin. Sci. Numer. Simulat. 60, 72 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Gandhigram Rural Institute – Deemed to be UniversityDindigulIndia

Personalised recommendations