Advertisement

Bell inequality violation in the framework of a Darwinian approach to quantum mechanics

  • Carlos BaladrónEmail author
  • Andrei Khrennikov
Review
  • 26 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

A fundamental particle in physical space subject to conservation of momentum and energy, and characterized by its average mass and its position is methodologically supplemented with an information processor – a classical Turing machine – and a randomizer both defined on an information space localized on every particle. In this way the particle can be considered a generalized Darwinian system on which natural selection could act steering the evolution on the information space of the algorithms that govern the behaviour of the particles, giving rise plausibly to emergent quantum behaviour from initial randomness. This theory is applied to an EPR-Bohm experiment for electrons in order to analyse Bell inequality violation. A model for the entanglement of two particles has been considered. The model includes shared randomness – each particle stores its own randomizer and that of its partner – and the mutual transfer of their algorithms – sharing programs – that contain their respective anticipation modules. This fact enables every particle to anticipate not only the possible future configurations of its surrounding systems, but also those of the surrounding systems of its entangled partner. Thus, while preserving locality and realism, this theory implies outcome dependence – through shared randomness – and parameter dependence – through shared anticipation – for entangled states and, as a consequence, the violation of the Bell inequality in an EPR-Bohm experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Shimony, in The Stanford Encyclopedia of Philosophy, Fall 2017 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2017/entries/bell-theorem/
  2. 2.
    S.J. Freedman, J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972) ADSCrossRefGoogle Scholar
  3. 3.
    E.S. Fry, R.C. Thompson, Phys. Rev. Lett. 37, 465 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) ADSCrossRefGoogle Scholar
  5. 5.
    M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan et al., Phys. Rev. Lett. 115, 250401 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok et al., Nature 526, 682 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevenset al., Phys. Rev. Lett. 115, 250402 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    T. Maudlin, J. Phys. A: Math. Theor. 47, 424010 (2014) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Hess, H. De Raedt, K. Michielsen, https://doi.org/arXiv:1605.04889 (2016)
  10. 10.
    M. Kupczynski, Phys. Lett. A 116, 417 (1986) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Khrennikov, Theoret. Math. Phys. 157, 1448 (2008) MathSciNetCrossRefGoogle Scholar
  12. 12.
    T.M. Nieuwenhuizen, Found. Phys. 41, 580 (2011) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. de la Peña, A.M. Cetto, A. Valdés Hernández, The Emerging Quantum: The Physics Behind Quantum Mechanics (Springer, Berlin, 2015) Google Scholar
  14. 14.
    G. Groessing, S. Fussy, J. Mesa Pascasio, H. Schwabl, https://doi.org/arXiv:1403.3295 [quant-ph] (2014)
  15. 15.
    L. Vervoort, Found. Phys. 48, 803 (2018) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Whitaker, Am. J. Phys. 84, 493 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    J. Bell, in The Ghost in the Atom, edited by P.C.W. Davies, J.R. Brown (Cambridge University Press, 1986), p. 73 Google Scholar
  18. 18.
  19. 19.
    L. Vervoort, https://doi.org/arXiv:1403.0145 [quant-ph] (2014)
  20. 20.
    R. Healey, in The Stanford Encyclopedia of Philosophy, Winter 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/win2016/entries/quantum-bayesian/
  21. 21.
    L. Vaidman, in The Stanford Encyclopedia of Philosophy, Fall 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2016/entries/qm-manyworlds/
  22. 22.
    Y. Aharonov, S. Popescu, J. Tollaksen, Phys. Today 63, 27 (2010) Google Scholar
  23. 23.
    W. Mückenheim, Phys. Rep. 133, 337 (1986) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Baladrón, A. Khrennikov, in Quantum Foundations, Probability and Information, edited by A. Khrennikov, B. Toni (Springer, Cham, 2018) Google Scholar
  25. 25.
    D. Jennings, M. Leifer, Contemp. Phys. 57, 60 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    F. Laudisa, Eur. J. Philos. Sci. 4, 1 (2014) CrossRefGoogle Scholar
  27. 27.
    A. Khrennikov, Fortsch. Phys. 65, 6 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Phys. Rep. 525, 1 (2013) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Ann. Phys. 376, 324 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    C. Baladrón, in Quantum Foundations and Open Quantum Systems, edited by T. Nieuwenhuizen, et al. (World Scientific, Singapore, 2015) Google Scholar
  31. 31.
    C. Baladrón, A. Khrennikov, BioSystems 150, 13 (2016) CrossRefGoogle Scholar
  32. 32.
    C. Baladrón, Fortsch. Phys. 65, 6 (2017) MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Baladrón, A. Khrennikov, Prog. Biophys. Mol. Biol. 130, 80 (2017) CrossRefGoogle Scholar
  34. 34.
    D. Barker-Plummer, in The Stanford Encyclopedia of Philosophy, Winter 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/win2016/entries/turing-machine/
  35. 35.
    S. Hossenfelder, https://doi.org/arXiv:1202.0720 [physics.hist-ph] (2012)
  36. 36.
    S. Wolfram, A New Kind of Science (Wolfram Media, 2002) Google Scholar
  37. 37.
  38. 38.
    S. Goldstein, in The Stanford Encyclopedia of Philosophy, Fall 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2016/entries/qm-bohm/
  39. 39.
    T. Norsen, Am. J. Phys. 82, 337 (2014) ADSCrossRefGoogle Scholar
  40. 40.
    D. Bohm, Annales de l’I.H.P. Physique théorique 49, 287 (1988) Google Scholar
  41. 41.
    M.J.W.Hall, Phys. Rev. A 84, 022102 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    A.J. Lotka, Proc. Natl. Acad. Sci. 8, 151 (1922) ADSCrossRefGoogle Scholar
  43. 43.
    A.N. Whitehead, Process and Reality (Macmillan, New York, 1929) Google Scholar
  44. 44.
    J.A. Wheeler, in Complexity, Entropy, and the Physics of Information, edited by W.H. Zurek (Addison-Wesley, Redwood City, CA, 1990) Google Scholar
  45. 45.
  46. 46.
    W.H. Zurek, Nat. Phys. 5, 181 (2009) CrossRefGoogle Scholar
  47. 47.
    B.R. Frieden, Am. J. Phys. 57, 1004 (1989) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    J.M. Honig, J. Chem. Educ. 86, 116 (2009) CrossRefGoogle Scholar
  49. 49.
    S. Aerts, Int. J. Theor. Phys. 47, 2 (2008) CrossRefGoogle Scholar
  50. 50.
    H. De Raedt, M.I. Katsnelson, K. Michielsen, https://doi.org/arXiv:1303.4574 [quant-ph] (2013)
  51. 51.
    H. De Raedt, M.I. Katsnelson, H.C. Donkerb, K. Michielsen, Ann. Phys. 359, 166 (2015) CrossRefGoogle Scholar
  52. 52.
    J. Summhammer, Int. J. Theor. Phys. 33, 171 (1994) MathSciNetCrossRefGoogle Scholar
  53. 53.
  54. 54.
    S. Perrard, M. Labousse, M. Miskin, E. Fort, Y. Couder, Nat. Commun. 5, 3219 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    S. Perrard, E. Fort, Y. Couder, Phys. Rev. Lett. 117, 094502 (2016) ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    K. Chatterjee, A. Pavlogiannis, B. Adlam, M.A. Nowak, https://doi.org/hal-00907940(2013)
  57. 57.
    A. Valentini, J. Phys. A: Math. Theor. 40, 3285 (2007) ADSCrossRefGoogle Scholar
  58. 58.
    M. Asano, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Quantum Adaptivity in Biology: from Genetics to Cognition (Springer, Heidelberg, Berlin, New York, 2014) Google Scholar
  59. 59.
    M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Found. Phys. 45, 1362 (2015) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física Teórica, Atómica y Óptica, Universidad de ValladolidValladolidSpain
  2. 2.International Center for Mathematical Modeling in Physics and Cognitive Science, Linnaeus UniversityVäxjöSweden
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia

Personalised recommendations