Advertisement

Are quantum thermodynamic machines better than their classical counterparts?

  • Arnab Ghosh
  • Victor Mukherjee
  • Wolfgang Niedenzu
  • Gershon KurizkiEmail author
Review
  • 92 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959) ADSCrossRefGoogle Scholar
  2. 2.
    W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978) ADSCrossRefGoogle Scholar
  3. 3.
    A. Lenard, J. Stat. Phys. 19, 575 (1978) ADSCrossRefGoogle Scholar
  4. 4.
    R. Alicki, J. Phys. A 12, L103 (1979) ADSCrossRefGoogle Scholar
  5. 5.
    R. Kosloff, J. Chem. Phys. 80, 1625 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Europhys. Lett. 67, 565 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    N. Erez, G. Gordon, M. Nest, G. Kurizki, Nature 452, 724 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    L. Del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011) CrossRefGoogle Scholar
  10. 10.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, 3949 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5, 4185 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. USA 112, 3275 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Pekola, Nat. Phys. 11, 118 (2015) CrossRefGoogle Scholar
  15. 15.
    R. Uzdin, A. Levy, R. Koslo, Phys. Rev. X 5, 031044 (2015) Google Scholar
  16. 16.
    M. Campisi, R. Fazio, Nat. Commun. 7, 11895 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Kosloff, Entropy 15, 2100 (2013) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Adv. At. Mol. Opt. Phys. 64, 329 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A 49, 143001 (2016) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 1 (2016) CrossRefGoogle Scholar
  22. 22.
    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. E 87, 012140 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Europhys. Lett. 103, 60005 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 90, 022102 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    C.B. Dağ, W. Niedenzu, O.E. Müstecapl"i"oğlu, G. Kurizki, Entropy 18, 244 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Phys. Rev. E 94, 062109 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A.I. Lvovsky, I. Mazets, M.O. Scully, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    A. Ghosh, W. Niedenzu, V. Mukherjee, G. Kurizki, in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso (Springer International Publishing, 2019), pp. 1–30 Google Scholar
  33. 33.
    A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) CrossRefGoogle Scholar
  34. 34.
    M. Kolar, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    O. Abah, E. Lutz, Europhys. Lett. 106, 20001 (2014) ADSCrossRefGoogle Scholar
  38. 38.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Phys. Rev. E 93, 052120 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    A.Ü.C. Hardal, O.E. Müstecapl"i"oğlu, Sci. Rep. 5, 12953 (2015) ADSCrossRefGoogle Scholar
  41. 41.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017) Google Scholar
  42. 42.
    B.K. Agarwalla, J.-H. Jiang, D. Segal, Phys. Rev. B 96, 104304 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824) Google Scholar
  44. 44.
    P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016) ADSCrossRefGoogle Scholar
  45. 45.
    E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, R. Sampaio, Fluctuating work in coherentquantum systems: proposals and limitations, https://doi.org/arXiv:1805.10096 (2018)
  46. 46.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015) CrossRefGoogle Scholar
  48. 48.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011) ADSCrossRefGoogle Scholar
  49. 49.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 1653 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017) ADSCrossRefGoogle Scholar
  52. 52.
    V. Chernyak, S. Mukamel, Phys. Rev. Lett. 93, 048302 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 71, 066102 (2005) ADSCrossRefGoogle Scholar
  54. 54.
    M.F. Gelin, D.S. Kosov, Phys. Rev. E 78, 011116 (2008) ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002) Google Scholar
  56. 56.
    B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 17, 075018 (2015) CrossRefGoogle Scholar
  57. 57.
    H. Spohn, J. Math. Phys. 19, 1227 (1978) ADSCrossRefGoogle Scholar
  58. 58.
    F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso, Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, Fundamental Theories of Physics (Springer International Publishing, 2019) Google Scholar
  59. 59.
    R. Clausius, Die mechanische Wärmetheorie, Erster Band, 3rd edn. (Friedrich Vieweg und Sohn, Braunschweig, 1887) Google Scholar
  60. 60.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (John Wiley & Sons, Inc., New York, 1985) Google Scholar
  61. 61.
    M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Phys. Rev. A 40, 2494 (1989) ADSCrossRefGoogle Scholar
  62. 62.
    W. Niedenzu, G. Kurizki, New J. Phys. 20, 113038 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arnab Ghosh
    • 1
  • Victor Mukherjee
    • 1
  • Wolfgang Niedenzu
    • 2
  • Gershon Kurizki
    • 1
    Email author
  1. 1.Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institut für Theoretische Physik, Universität InnsbruckInnsbruckAustria

Personalised recommendations