Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2575–2601 | Cite as

An effect of large permanent charge: decreasing flux with increasing transmembrane potential

  • Liwei Zhang
  • Bob EisenbergEmail author
  • Weishi Liu
Regular Article
  • 18 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

In this work, we examine effects of large permanent charges on ionic flow through ion channels based on a quasi-one-dimensional Poisson–Nernst–Planck model. It turns out that large positive permanent charges inhibit the flux of cation as expected, but strikingly, as the transmembrane electrochemical potential for anion increases in a particular way, the flux of anion decreases. The latter phenomenon was observed experimentally but the cause seemed to be unclear. The mechanisms for these phenomena are examined with the help of the profiles of the ionic concentrations, electric fields and electrochemical potentials. The underlying reasons for the near zero flux of cation and for the decreasing flux of anion with the increasing of its transmembrane electrochemical potential are shown to be significantly different over different regions of the permanent charge. Our model is oversimplified. More structural detail and more correlations between ions can and should be included. But the basic finding seems striking and important and deserving of further investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.N. Abelson, M.I. Simon, S.V. Ambudkar, M.M. Gottesman, ABC Transporters: Biochemical, Cellular, and Molecular Aspects (Academic Press, 1998) Google Scholar
  2. 2.
    P.F. Baker, M.P. Blaustein, A.L. Hodgkin, R.A. Steinhardt, J. Physiol. 200, 431 (1969) CrossRefGoogle Scholar
  3. 3.
    M.P. Blaustein, W.J. Lederer, Physiol. Rev. 79, 763 (1999) CrossRefGoogle Scholar
  4. 4.
    P. Chlanda, E. Mekhedov, H. Waters, C.L. Schwartz, E.R. Fischer, R.J. Ryham, F.S. Cohen, P.S. Blank, J. Zimmerberg, Nat. Microbiol. 1, 16050 (2016) CrossRefGoogle Scholar
  5. 5.
    B. Eisenberg, W. Liu, Mol. Based Math. Biol. 5, 125 (2017) MathSciNetGoogle Scholar
  6. 6.
    B. Eisenberg, ASBMB Today 13, 36 (2014) Google Scholar
  7. 7.
    B. Eisenberg, Fluct. Noise Lett. 11, 1240001 (2012) CrossRefGoogle Scholar
  8. 8.
    B. Eisenberg, Crowded charges in ion channels, in Advances in Chemical Physics, edited by S.A. Rice, A.R. Dinner (John Wiley & Sons, Inc., 2012), Vol. 148, pp. 77–223 Google Scholar
  9. 9.
    R.S. Eisenberg, J. Memb. Biol. 150, 1 (1996) CrossRefGoogle Scholar
  10. 10.
    R.S. Eisenberg, Atomic biology, electrostatics and ionic channels, in New Developments and Theoretical Studies of Proteins, edited by R. Elber (World Scientific, Philadelphia, 1996), pp. 269–357 Google Scholar
  11. 11.
    R.S. Eisenberg, J. Memb. Biol. 115, 1 (1990) CrossRefGoogle Scholar
  12. 12.
    B. Eisenberg, W. Liu, SIAM J. Math. Anal. 38, 1932 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Eisenberg, W. Liu, H. Xu, Nonlinearity 28, 103 (2015) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    O. Frohlich, R.B. Gunn, Biochem. Biophys. Acta 864, 169 (1986) Google Scholar
  15. 15.
    D. Gillespie, A singular perturbation analysis of the Poisson–Nernst–Planck system: Applications to Ionic Channels, Ph.D. Dissertation, Rush University at Chicago, 1999 Google Scholar
  16. 16.
    J. Griffiths, C. Sansom, The Transporter Facts Book (Academic Press, 1997) Google Scholar
  17. 17.
    F. Helfferich, Ion Exchange (1995 Reprint) (McGraw Hill reprinted by Dover, 1962) Google Scholar
  18. 18.
    B. Hille, Ion Channels of Excitable Membranes, 3rd edn. (Sinauer Associates Inc., 2001) Google Scholar
  19. 19.
    B. Hille, Transport Across Cell Membranes: Carrier Mechanisms, in Textbook of Physiology, edited by H.D. Patton et al. (Saunders, 1989), Vol. 1, Chap. 2, pp. 24–47 Google Scholar
  20. 20.
    A.L. Hodgkin, Biol. Rev. 26, 339 (1951) CrossRefGoogle Scholar
  21. 21.
    S. Ji, B. Eisenberg, W. Liu, J. Dyn. Differ. Equ. (2017),  https://doi.org/10.1007/s10884-017-9607-1
  22. 22.
    S. Ji, W. Liu, J. Dyn. Differ. Equ. 24, 955 (2012) CrossRefGoogle Scholar
  23. 23.
    S. Ji, W. Liu, M. Zhang, SIAM J. Appl. Math. 75, 114 (2015) MathSciNetCrossRefGoogle Scholar
  24. 24.
    R.D. Keynes, R.C. Swan, J. Physiol. 147, 591 (1959) CrossRefGoogle Scholar
  25. 25.
    G. Lin, W. Liu, Y. Yi, M. Zhang, SIAM J. Appl. Dyn. Syst. 12, 1613 (2013) MathSciNetCrossRefGoogle Scholar
  26. 26.
    W. Liu, SIAM J. Appl. Math. 65, 754 (2005) MathSciNetCrossRefGoogle Scholar
  27. 27.
    W. Liu, J. Differ. Equ. 246, 428 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    W. Liu, B. Wang, J. Dyn. Differ. Equ. 22, 413 (2010) CrossRefGoogle Scholar
  29. 29.
    W. Liu, X. Tu, M. Zhang, J. Dyn. Differ. Equ. 24, 985 (2012) CrossRefGoogle Scholar
  30. 30.
    W. Liu, H. Xu, J. Differ. Equ. 258, 1192 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    M. Lu, J. Symersky, M. Radchenko, A. Koide, Y. Guo, R. Nie, S. Koide, Proc. Natl. Acad. Sci. U. S. A. 110, 2099 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    H. Miedema, M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, B. Eisenberg, Nano Lett. 7, 2886 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    W. Nonner, R.S. Eisenberg, Biophys. J. 75, 1287 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    R.F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996) Google Scholar
  35. 35.
    I. Rubinstein, Electro-Diffusion of Ions, in SIAM Studies in Applied Mathematics (SIAM, Philadelphia, PA, 1990), Vol. 11 Google Scholar
  36. 36.
    B. Sakmann, E. Neher, Single Channel Recording, 2nd edn. (Plenum, 1995) Google Scholar
  37. 37.
    W.D. Stein, T. Litman, Channels, carriers, and pumps: an introduction to membrane transport (Elsevier, 2014) Google Scholar
  38. 38.
    R.B. Stockbridge, L. Kolmakova-Partensky, T. Shane, A. Koide, A. Koide, C. Miller, S. Newstead, Nature 525, 548 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981) Google Scholar
  40. 40.
    F.L. Theodoulou, I.D. Kerr, Biochem. Soc. Trans. 43, 1033 (2015) CrossRefGoogle Scholar
  41. 41.
    D. Tosteson, Membrane Transport: People and Ideas (American Physiological Society, 1989) Google Scholar
  42. 42.
    H.H. Ussing, Acta Physiolog. Scand. 19, 43 (1949) CrossRefGoogle Scholar
  43. 43.
    H.H. Ussing, Nature 160, 262 (1947) ADSCrossRefGoogle Scholar
  44. 44.
    D. Vasileska, S.M. Goodnick, G. Klimeck, in Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation (CRC Press, 2010), Vol. 764 Google Scholar
  45. 45.
    W. Wang, R. MacKinnon, Cell 169, 422 (2017) CrossRefGoogle Scholar
  46. 46.
    L. Zhang, W. Liu, Poisson–Nernst–Planck systems for ion channels with large permanent charges. Preprint. Google Scholar
  47. 47.
    J. Zheng, M.C. Trudeau, Handbook of ion channels (CRC Press, 2015) Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Shanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Department of Molecular Biophysics and PhysiologyRush Medical CenterChicagoUSA
  3. 3.Department of MathematicsUniversity of KansasLawrenceUSA

Personalised recommendations