Diffusive propagation of nervous signals and their quantum control

  • Jiří J. MarešEmail author
  • Pavel Hubík
  • Václav Špička
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics


The governing theory of electric signal transfer through nerve fibre, as established by Hodgkin and Huxley in the 1950s, uses for the description of action potential a clever combination of various concepts of electrochemistry and circuit theory; however, this theory neglects some fundamental features of charge transport through any conductor, e.g., the existence of a temporary charged layer on its boundary accompanied by an external electric field. The consequences of this fact are, among others, the introduction of a non-adequate concept of “conduction velocity” and the obscure idea of saltatory propagation of action potential in myelinaed nerve fibres. Our approach, based on standard transport theory and, particularly, on the submarine cable model, describes the movement of the front of the action potential as a diffusion process characterized by the diffusion constant DE. This process is physically realized by the redistribution of ions in the nervous fluid (axoplasm), which is controlled by another diffusion constant DΩDE. Since the action bound with the movement of Na+ and K+ cations prevailing in the axoplasm is comparable with the Planck constant (i.e. DΩ∕2M, where M is ion mass), signal transfer is actually a quantum process. This fact accounts for the astonishing universality of the transfer of action potential, which is proper to quite different species of animals. As is further shown, the observed diversity in the behaviour of nerve tissues is controlled by the scaling factor \(\sqrt{(D_\Omega/D_E)}\), where DΩ is of a quantum nature and DE of an essentially geometric one.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Hodgkin, A.F. Huxley, Proc. R. Soc. B: Biol. Sci. 140, 177 (1952) ADSGoogle Scholar
  2. 2.
    W. Rall, Core conductor theory and cable properties of neurons, in The Nervous System, Cellular Biology of Neurons, edited by E.R. Kandel (Am. Physiol. Soc., Bethesda MD, 1977), Vol. 1, p. 39 Google Scholar
  3. 3.
    E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A.J. Hudspeth, Principles of Neural Science (McGraw Hill Inc., New York, 2013) Google Scholar
  4. 4.
    L.R. Squire, F.E. Bloom, N.C. Spitzer, S. du Lac, A. Ghosh, D. Berg, Fundamental Neuroscience, 3rd edn. (Elsevier- Academic Press, Amsterdam, 2008) Google Scholar
  5. 5.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) CrossRefGoogle Scholar
  6. 6.
    B. Hille,Ion channels of excitable membranes, 3rd edn. (Sinauer Associates, Inc., Sunderland, MA, 2001) Google Scholar
  7. 7.
    J.J. Mareš, J. Krištofik, P. Hubík, Physica E 12, 340 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    W. Thomson (Lord Kelvin), Proc. R. Soc. London 7, 382 (1854–1855) Google Scholar
  9. 9.
    B.M. Koeppen, B.A. Stanton, Berne and Levy Physiology, 6th edn. (Mosby- Elsevier, Philadelphia, 2008) Google Scholar
  10. 10.
    E. Babsky, B. Khodorov, G. Kositsky, A. Zubkov, in Human Physiology (Mir Publishers, Moscow, 1982), Vol. 2 Google Scholar
  11. 11.
    P. Erman, Ann. Phys. 8, 197 (1801) CrossRefGoogle Scholar
  12. 12.
    H. Weber, J. Wellstein, Encyklopädie der Elementar-Mathematik, 3. Bd. (B.G. Teubner, Leipzig, 1907) Google Scholar
  13. 13.
    W.G.V. Rosser, Am. J. Phys. 31, 884 (1963) ADSCrossRefGoogle Scholar
  14. 14.
    A.K.T. Assis, J.A. Hernandes, Elektrischer Strom und Oberflächen-ladungen (C. Roy Keys Inc., Montreal, 2013) Google Scholar
  15. 15.
    O. Jefimenko, Am. J. Phys. 30, 19 (1962) ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Le Monnier, in Histoire de l’Académie Royale des Sciences, Année 1746 (Imprimerie Royale, Paris, 1751), p. 447 Google Scholar
  17. 17.
    A.G. Brown, Nerve Cells and : An Introduction to Neuroscience, 2nd edn. (Springer, London, 2001) Google Scholar
  18. 18.
    I. Tasaki, Physiology and Electrochemistry of Nerve Fibers (Academic Press, New York, 1982) Google Scholar
  19. 19.
    H.S. Gasser, Ohio J. Sci. 41, 145 (1941) Google Scholar
  20. 20.
    C.C. Chernecky, B.J. Berger, Laboratory Tests and Diagnostic Procedures, 6th edn. (Saunders, St. Louis, 2013) Google Scholar
  21. 21.
    M.L. Schagrin, Am. J. Phys. 31, 536 (1963) ADSCrossRefGoogle Scholar
  22. 22.
    G.S. Ohm, Die galvanische Kette, mathematisch bearbeitet (T.H. Riemann, Berlin, 1827) Google Scholar
  23. 23.
    G. Kirchhoff, Ann. Phys. 154, 506 (1848) CrossRefGoogle Scholar
  24. 24.
    W.R. Smythe, Static and Dynamic Electricity, 3rd edn. (McGraw-Hill Co., New York, 1968) Google Scholar
  25. 25.
    W. Weber, Ann. Phys. 232, 1 (1875) CrossRefGoogle Scholar
  26. 26.
    A. Fick, Ann. Phys. 170, 59 (1855) CrossRefGoogle Scholar
  27. 27.
    L. Hermann, Pflueger’s Arch. Ges. Physiol. 75, 574 (1899) CrossRefGoogle Scholar
  28. 28.
    L. Hermann, Pflueger’s Arch. Ges. Physiol. 109, 95 (1905) CrossRefGoogle Scholar
  29. 29.
    J.L. Hoorweg, Pflueger’s Arch. Ges. Physiol. 71, 128 (1898) CrossRefGoogle Scholar
  30. 30.
    J. Fourier, Théorie analytique de la chaleur (F. Didot et Fils, Paris, 1822), [English transl.: The Analytical Theory of Heat (Dover Publications, Inc., New York, 2003)] Google Scholar
  31. 31.
    J.B. Jack, D. Noble, R. Tsien, Electric Current Flow in Excitable Cells (Oxford University Press, London, 1975) Google Scholar
  32. 32.
    A.L. Hodgkin, A.F. Huxley, Nature 144, 710 (1939) ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Rosenthal, F. Bezanilla, Biol. Bull. 199, 135 (2000) CrossRefGoogle Scholar
  34. 34.
    R. Milo, R. Phillips, Cell Biology by the Numbers (Garland Science, New York, 2016) Google Scholar
  35. 35.
    K.S. Cole, Membranes Ions and Impulses (University of California Press, Berkeley, 1972) Google Scholar
  36. 36.
    B. Katz, Nerve, Muscle, and (McGraw-Hill, New York, 1966) Google Scholar
  37. 37.
    P. Debye, E. Hückel, Phys. Z. 24, 185 (1923) Google Scholar
  38. 38.
    C. Kittel, Introduction to Solid State Physics, 5th edn. (John Wiley and Sons, Inc., New York, 1976) Google Scholar
  39. 39.
    C.-H. Berthold, I. Nilsson, M. Rydmark, J. Anat. 136, 483 (1983) Google Scholar
  40. 40.
    S.G. Waxman, J.D. Kocsis, P.K. Stys, The Axon (Oxford University Press, New York, 1995) Google Scholar
  41. 41.
    R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd revised edn. (Dover Publications, Mineola NY, 2002) Google Scholar
  42. 42.
    K.S. Cole, J. Gen. Physiol. 66, 133 (1975) CrossRefGoogle Scholar
  43. 43.
    J.B. Hursh, Am. J. Physiol. 127, 131 (1939) Google Scholar
  44. 44.
    F.K. Sanders, D. Whitteridge, J. Physiol. 105, 152 (1946) CrossRefGoogle Scholar
  45. 45.
    R.K. Hobbie, B.J. Roth, Intermediate Physics for Medicine and Biology, 4th edn. (Springer, New York, 2007) Google Scholar
  46. 46.
    J.-M. Lévy-Leblond, F. Balibar, Quantics: Rudiments of Quantum Physics (North-, Amsterdam, 1990) Google Scholar
  47. 47.
    J.J. Mareš, J. Stávek, J. Šesták, J. Chem. Phys. 121, 1499 (2004) Google Scholar
  48. 48.
    R. Fürth, Z. Phys. 81, 143 (1933) ADSCrossRefGoogle Scholar
  49. 49.
    L. de la Peña, A.M. Cetto, The Quantum Dice – An Introduction to Stochastic Electrodynamics (Kluwer Academic Publishers, Dordrecht, 1996) Google Scholar
  50. 50.
    P.W. Milloni, The Quantum Vacuum – An Introduction to Quantum Electrodynamics (Academic Press, Inc., New York, 1994) Google Scholar
  51. 51.
    K. Bogdanov, Biology in Physics (Academic Press, San Diego, 2000) Google Scholar
  52. 52.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Co., New York, 1983) Google Scholar
  53. 53.
    J. Palacios, Dimensional Analysis (MacMillan and Comp., Ltd., London, 1964) Google Scholar
  54. 54.
    W.A.H. Rushton, J. Physiol. 115, 101 (1951) CrossRefGoogle Scholar
  55. 55.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, Fundamentals of Heat and Mass Transfer, 7th edn. (John Wiley & Sons, Inc., New York, 2011) Google Scholar
  56. 56.
    D.J. Aidley, The Physiology of Excitable Cells, 4th edn. (Cambridge University Press, Cambridge, 1998) Google Scholar
  57. 57.
    A.L. Hodgkin, The Ionic Basis of Nervous Conduction, Nobel Lecture, December 11, 1963 Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiří J. Mareš
    • 1
    Email author
  • Pavel Hubík
    • 1
  • Václav Špička
    • 1
  1. 1.Institute of Physics of the Czech Academy of SciencesPrague 6Czech Republic

Personalised recommendations