Advertisement

Life in crowded conditions

Molecular crowding and beyond
  • Stefan KlumppEmail author
  • William Bode
  • Palka Puri
Review
  • 51 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Molecular crowding is ubiquitous in cells, which are rather densely packed with macromolecules. The effects of such crowded conditions on biophysical processes can be complex and puzzling. Here, we review these effects in a step-by-step manner. We start with excluded volume effects on elementary physical processes: diffusion, binding, reactions, and polymer compaction. We then discuss the binding of a transcription factor to a binding site on DNA as an example of a more complex process and consider effects of attractive interactions and active processes. We also give an outlook to larger-scale crowded systems such as suspensions of cells, biofilms, and tissues, which can be described using similar approaches as molecular crowded systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.B. Zimmerman, A.P. Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993) CrossRefGoogle Scholar
  2. 2.
    R.J. Ellis, Trends Biochem. Sci. 26, 597 (2001) CrossRefGoogle Scholar
  3. 3.
    G. Rivas, A.P. Minton, Trends Biochem. Sci. 41, 970 (2016) CrossRefGoogle Scholar
  4. 4.
    F. Neidhard, J. Ingraham, M. Schaechter, Physiology of the Bacterial Cell: A Molecular Approach (Sinauer, MA, 1990) Google Scholar
  5. 5.
    O. Medalia et al., Science 298, 1209 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    D.S. Goodsell, The Machinery of Life (Springer, NY, 1992) Google Scholar
  7. 7.
    M. Kumar, M.S. Mommer, V. Sourjik, Biophys. J. 98, 552 (2010) CrossRefGoogle Scholar
  8. 8.
    B.R. Parry et al., Cell 156, 183 (2014) CrossRefGoogle Scholar
  9. 9.
    S.R. McGuffee, A.H. Elcock, PLoS Comput. Biol. 6, e1000694 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    I. Yu et al., eLife 5, e19274 (2016) CrossRefGoogle Scholar
  11. 11.
    D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus, Angew. Chem. 127, 2578 (2015) CrossRefGoogle Scholar
  12. 12.
    A.J. Boersma, I.S. Zuhorn, B. Poolman, Nat. Methods 12, 227 (2015) CrossRefGoogle Scholar
  13. 13.
    M.C. Konopka et al., J. Bacteriol. 191, 231 (2009) CrossRefGoogle Scholar
  14. 14.
    A.P. Minton, J. Cell Sci. 119, 2863 (2006) CrossRefGoogle Scholar
  15. 15.
    H.X. Zhou, G. Rivas, A.P. Minton, Annu. Rev. Biophys. 37, 375 (2008) CrossRefGoogle Scholar
  16. 16.
    A. Christiansen, Q. Wang, M.S. Cheung, P. Wittung-Stafshede, Biophys. Rev. 5, 137 (2013) CrossRefGoogle Scholar
  17. 17.
    M. Tabaka, T. Kalwarczyk, J. Szymanski, S. Hou, R. Holyst, Front. Phys. 2, 54 (2014) CrossRefGoogle Scholar
  18. 18.
    R. Phillips, J. Kondev, J. Theriot, Physical Biology of the Cell (Garland, 2008) Google Scholar
  19. 19.
    D. Gomez, S. Klumpp, Front. Phys. 3, 45 (2015) CrossRefGoogle Scholar
  20. 20.
    L.A. Ferreira et al., Int. J. Mol. Sci. 16, 13528 (2015) CrossRefGoogle Scholar
  21. 21.
    J.S. van Zon, M.J. Morelli, S. Tǎnase-Nicola, P.R. ten Wolde, Biophys. J. 91, 4350 (2006) CrossRefGoogle Scholar
  22. 22.
    M.J. Morelli, R.J. Allen, P.R. Ten Wolde, Biophys. J. 101, 2882 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    N. Muramatsu, A.P. Minton, Proc. Natl. Acad. Sci. USA 85, 2984 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (1999) CrossRefGoogle Scholar
  25. 25.
    M.B. Elowitz, M.G. Surette, P.E. Wolf, J.B. Stock, S. Leibler, J. Bacteriol. 181, 197 (1999) Google Scholar
  26. 26.
    S. Klumpp, M. Scott, S. Pedersen, T. Hwa, Proc. Natl. Acad. Sci. USA 110, 16754 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    X. Dai et al., Nat. Microbiol. 2, 16231 (2017) CrossRefGoogle Scholar
  28. 28.
    G. Cannarozzi et al., Cell 141, 355 (2010) CrossRefGoogle Scholar
  29. 29.
    M. Mustafi, J.C. Weisshaar, mBio 9, e02143–17 (2018) CrossRefGoogle Scholar
  30. 30.
    E. Barkai, Y. Garini, R. Metzler, Phys. Today 65, 29 (2012) CrossRefGoogle Scholar
  31. 31.
    I. Golding, E.C. Cox, Phys. Rev. Lett. 96, 098102 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    J.H. Jeon et al., Phys. Rev. Lett. 106, 048103 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    N. Pawar, C. Donth, M. Weiss, Curr. Biol. 24, 1905 2014 Google Scholar
  34. 34.
    M.S. Cheung, D. Klimov, D. Thirumalai, Proc. Natl. Acad. Sci. USA 102, 4753 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    A. Soranno et al., Proc. Natl. Acad. Sci. USA 111, 4874 (2014) ADSCrossRefGoogle Scholar
  36. 36.
    C. Navarro-Retamal et al., Phys. Chem. Chem. Phys. 18, 25806 (2016) CrossRefGoogle Scholar
  37. 37.
    P.H. vonHippel, O.G. Berg, J. Biol. Chem. 264, 675 (1989) Google Scholar
  38. 38.
    S.E. Halford, J.F. Marko, Nucleic Acids Res. 32, 3040 (2004) CrossRefGoogle Scholar
  39. 39.
    J. Elf, G.W. Li, X.S. Xie, Science 316, 1191 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    M. Smoluchowski, Z. Phys. Chem. 92, 129 (1917) Google Scholar
  41. 41.
    R.B. Winter, O.G. Berg, P.H. Von Hippel, Biochemistry 20, 6961 (1981) CrossRefGoogle Scholar
  42. 42.
    M. Bauer, R. Metzler, PloS One 8, e53956 (2013) ADSCrossRefGoogle Scholar
  43. 43.
    C. Brackley, M. Cates, D. Marenduzzo, Phys. Rev. Lett. 111, 108101 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    D. Krepel, D. Gomez, S. Klumpp, Y. Levy, J. Phys. Chem. B 120, 11113 (2016) CrossRefGoogle Scholar
  45. 45.
    D. Gomez, S. Klumpp, Phys. Chem. Chem. Phys. 18, 11184 (2016) CrossRefGoogle Scholar
  46. 46.
    A. Shvets, M. Kochugaeva, A.B. Kolomeisky, J. Phys. Chem. B 120, 5802 (2015) CrossRefGoogle Scholar
  47. 47.
    A.A. Shvets, A.B. Kolomeisky, J. Phys. Chem. Lett. 7, 2502 (2016) CrossRefGoogle Scholar
  48. 48.
    P.H. Von Hippel, A. Revzin, C.A. Gross, A.C. Wang, Proc. Natl. Acad. Sci. USA 71,4808 (1974) ADSCrossRefGoogle Scholar
  49. 49.
    E.J. Deeds, O. Ashenberg, J. Gerardin, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 104, 14952 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    S. Klumpp, T. Hwa, Proc. Natl. Acad. Sci. USA 105, 20245 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    I.M. Kuznetsova, B.Y. Zaslavsky, L. Breydo, K.K. Turoverov, V.N. Uversky, Molecules 20, 1377 (2015) CrossRefGoogle Scholar
  52. 52.
    D. Gnutt, S. Ebbinghaus, Biol. Chem. 397, 37 (2016) CrossRefGoogle Scholar
  53. 53.
    D.L. Schmitt, S. An, Biochemistry 56, 3184 (2017) CrossRefGoogle Scholar
  54. 54.
    M.Z. Wilson, Z. Gitai, Curr. Opin. Microbiol. 16, 177 (2013) CrossRefGoogle Scholar
  55. 55.
    S. Bhattacharyya et al., elife 5, e20309 (2016) CrossRefGoogle Scholar
  56. 56.
    C.P. Brangwynne et al., Science 324, 1729 (2009) ADSCrossRefGoogle Scholar
  57. 57.
    A.A. Hyman, C.A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 30, 39 (2014) CrossRefGoogle Scholar
  58. 58.
    D. Zwicker, R. Seyboldt, C.A. Weber, A.A. Hyman, F. Jülicher, Nat. Phys. 13, 408 (2017) CrossRefGoogle Scholar
  59. 59.
    R. Lipowsky, S. Klumpp, Physica A 352, 53 (2005) ADSCrossRefGoogle Scholar
  60. 60.
    D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007) ADSCrossRefGoogle Scholar
  61. 61.
    X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000) ADSCrossRefGoogle Scholar
  62. 62.
    G. Mino et al., Phys. Rev. Lett. 106, 048102 (2011) ADSCrossRefGoogle Scholar
  63. 63.
    A. Jepson, V.A. Martinez, J. Schwarz-Linek, A. Morozov, W.C. Poon, Phys. Rev. E 88, 041002 (2013) ADSCrossRefGoogle Scholar
  64. 64.
    E.W. Burkholder, J.F. Brady, Phys. Rev. E 95, 052605 (2017) ADSCrossRefGoogle Scholar
  65. 65.
    P. Puri, S. Klumpp (2018), endrefcommentnewblock unpublished Google Scholar
  66. 66.
    S. Sengupta et al., J. Am. Chem. Soc. 135, 1406 (2013) CrossRefGoogle Scholar
  67. 67.
    C. Riedel et al., Nature 517, 227 (2015) ADSCrossRefGoogle Scholar
  68. 68.
    P. Illien et al., Nano Lett. 17, 4415 (2017) ADSCrossRefGoogle Scholar
  69. 69.
    D. Bi, X. Yang, M.C. Marchetti, M.L. Manning, Phys. Rev. X 6, 021011 (2016) Google Scholar
  70. 70.
    M. Delarue et al., Nat. Phys. 12, 762 (2016) CrossRefGoogle Scholar
  71. 71.
    D. Matoz-Fernandez, K. Martens, R. Sknepnek, J. Barrat, S. Henkes, Soft Matter 13, 3205 (2017) ADSCrossRefGoogle Scholar
  72. 72.
    K. Drescher et al., Proc. Natl. Acad. Sci. USA 113, E2066 (2016) CrossRefGoogle Scholar
  73. 73.
    M.C. Duvernoy et al., Nat. Commun. 9, 1120 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Nonlinear Dynamics, University of GöttingenGöttingenGermany

Personalised recommendations