Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 10–11, pp 1051–1061 | Cite as

The effect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings

  • Dmitry V. KasatkinEmail author
  • Vladimir I. Nekorkin
Regular Article
Part of the following topical collections:
  1. Advances in Nonlinear Dynamics of Complex Networks: Adaptivity, Stochasticity, Delays

Abstract

We study the influence of the initial topology of connections on the organization of synchronous behavior in networks of phase oscillators with adaptive couplings. We found that networks with a random sparse structure of connections predominantly demonstrate the scenario as a result of which chimera states are formed. The formation of chimera states retains the features of the hierarchical organization observed in networks with global connections [D.V. Kasatkin, S. Yanchuk, E. Schöll, V.I. Nekorkin, Phys. Rev. E 96, 062211 (2017)], and also demonstrates a number of new properties due to the presence of a random structure of network topology. In this case, the formation of coherent groups takes a much longer time interval, and the sets of elements that form these groups can be significantly rearranged during the evolution of the network. We also found chimera states, in which along with the coherent and incoherent groups, there are subsets, whose different elements can be synchronized with each other for sufficiently long periods of time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization, a Universal Consept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  2. 2.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984) Google Scholar
  4. 4.
    J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    F.A. Rodrigues, T.K.D. Peron, P. Ji, J. Kurths, Phys. Rep. 610, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D.J. Watts, S.H. Strogatz, Nature (London) 393, 440 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    A.-L. Barabasi, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Ujjwal, N. Punetha, R. Ramaswamy Phys. Rev. E 93, 012207 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhu, Zh. Zheng, J. Yang, Phys. Rev. E 89, 022914 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    S. Krishnagopal, J. Lehnert, W. Poel, A. Zakharova, E. Schöll, Phil. Trans. R. Soc. A 375, 20160216 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. E 71, 036151 (2005) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Gómes-Gardeñes, Y. Moreno, A. Arenas, Phys. Rev. Lett. 98, 034101 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    B.C. Coutinho, A.V. Goltsev, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 87, 032106 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C.R. Laing, K. Rajendran, I.G. Kevrekidis, Chaos 22, 013132 (2012) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    V. Kohar, P. Ji, A. Choudhary, S. Sinha, J. Kurths, Phys. Rev. E 90, 022812 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    R.K. Singh, T. Bagarti, Europhys. Lett. 111, 50010 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    Q. Ren, J. Zhao, Phys. Rev. E 76, 016207 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    R.K. Niyogi, L.Q. English, Phys. Rev. E 80, 066213 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    T. Aoki, T. Aoyagi, Phys. Rev. E 84, 066109 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    V.I. Nekorkin, D.V. Kasatkin, AIP Conf. Proc. 1738, 210010 (2016) CrossRefGoogle Scholar
  25. 25.
    D.V. Kasatkin, S. Yanchuk, E. Schöll, V.I. Nekorkin, Phys. Rev. E 96, 062211 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002) Google Scholar
  27. 27.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    I. Omelchenko, Yu. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    E. Schöll, Eur. Phys. J. 225, 891 (2016) Google Scholar
  31. 31.
    I.A. Shepelev, T.E. Vadivasova, A.V. Bukh, G.I. Strelkova, V.S. Anishchenko, Phys. Lett. A 381, 1398 (2017) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Ulonska, I. Omelchenko, A. Zakharova, E. Schöll, Chaos 26, 094825 (2016) Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations