Advertisement

Operational dynamical modeling of spin 1/2 relativistic particles

The Dirac equation and its classical limit
  • Renan Cabrera
  • Andre G. Campos
  • Herschel A. Rabitz
  • Denys I. BondarEmail author
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

The formalism of Operational Dynamical Modeling [Bondar et al., Phys. Rev. Lett. 109, 190403 (2012)] is employed to analyze dynamics of spin half relativistic particles. We arrive at the Dirac equation from specially constructed relativistic Ehrenfest theorems by assuming that the coordinates and momenta do not commute. Forbidding creation of antiparticles and requiring the commutativity of the coordinates and momenta lead to classical Spohn’s equation [Spohn, Ann. Phys. 282, 420 (2000)]. Moreover, Spohn’s equation turns out to be the classical Koopman-von Neumann theory underlying the Dirac equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ahrens, S.-Y. Zhu, J. Jiang, Y. Sun, New J. Phys. 17, 113021 (2015) ADSCrossRefGoogle Scholar
  2. 2.
    F.A. An, E.J. Meier, B. Gadway, Sci. Adv. 3, e1602685 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    J. Autschbach, J. Chem. Phys. 136, 150902 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959) ADSCrossRefGoogle Scholar
  5. 5.
    W. Baylis, Phys. Rev. A 45, 4293 (1992) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    W. Baylis, Electrodynamics: a modern geometric approach (Birkhauser, 1999) Google Scholar
  7. 7.
    W. Baylis, R. Cabrera, J. Keselica, Adv. Appl. Clifford Al. 20, 517 (2010) CrossRefGoogle Scholar
  8. 8.
    W. Baylis, Y. Yao, Phys. Rev. A 60, 785 (1999) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.V. Berry, in Quantum Mechanics: Scientific Perspectives on Divine Action (Vatican Observatory CTNS Publications, 2001), pp. 41–54 Google Scholar
  10. 10.
    I. Bialynicki-Birula, Acta Phys. Aust. Supl. XVIII, 111 (1977) Google Scholar
  11. 11.
    I. Bialynicki-Birula, EPJ Web Conf. 78, 01001 (2014) CrossRefGoogle Scholar
  12. 12.
    I. Bialynicki-Birula, P. Górnicki, J. Rafelski, Phys. Rev. D 44, 1825 (1991) ADSCrossRefGoogle Scholar
  13. 13.
    R. Blatt, C. Roos, Nat. Phys. 8, 277 (2012) CrossRefGoogle Scholar
  14. 14.
    O. Boada, A. Celi, J. Latorre, M. Lewenstein, New J. Phys. 13, 035002 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    A. Bolivar, Quantum-classical correspondence: dynamical quantization and the classical limit (Springer-Verlag, 2004) Google Scholar
  16. 16.
    J. Bolte, R. Glaser, J. Phys. A 37, 6359 (2004) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D.I. Bondar, R. Cabrera, A. Campos, S. Mukamel, H.A. Rabitz, J. Phys. Chem. Lett. 7, 1632 (2016) CrossRefGoogle Scholar
  18. 18.
    D.I. Bondar, R. Cabrera, R.R. Lompay, M.Y. Ivanov, H.A. Rabitz, Phys. Rev. Lett. 109, 190403 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    D.I. Bondar, R. Cabrera, H.A. Rabitz, Phys. Rev. A 88, 012116 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    D.I. Bondar, R. Cabrera, D.V. Zhdanov, H.A. Rabitz, Phys. Rev. A 88, 052108 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    D.I. Bondar, A.G. Campos, R. Cabrera, H.A. Rabitz, Phys. Rev. E 93, 063304 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    D.I. Bondar, R.R. Lompay, W.-K. Liu, Am. J. Phys. 79, 392 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    R. Cabrera, D.I. Bondar, A.G. Campos, H.A. Rabitz, Phys. Rev. A. 94, 052111 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    R. Cabrera, D.I. Bondar, K. Jacobs, H.A. Rabitz, Phys. Rev. A 92, 042122 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    A.G. Campos, R. Cabrera, D.I. Bondar, H. Rabitz, https://doi.org/arXiv:1502.03025 (2015)
  26. 26.
    A.G. Campos, R. Cabrera, D.I. Bondar, H.A. Rabitz, Phys. Rev. A 90, 034102 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    G. Coddens, From Spinors to Quantum Mechanics (World Scientific, 2015) Google Scholar
  28. 28.
    E. Deotto, E. Gozzi, D. Mauro, J. Math. Phys. 44, 5902 (2003) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    E. Deotto, E. Gozzi, D. Mauro, J. Math. Phys. 44, 5937 (2003) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Elze, M. Gyulassy, D. Vasak, Phys. Lett. B 177, 402 (1986) ADSCrossRefGoogle Scholar
  31. 31.
    L.D. Faddeev, L. Khalfin, I. Komarov, in VA Fock-selected works: Quantum mechanics and quantum field theory (CRC Press, 2004), Sect. 29-2 Google Scholar
  32. 32.
    J. Fanchi, Found. Phys. 23, 487 (1993) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C.M. Flores, Classical propagation in the quantum inverted oscillator, https://doi.org/arXiv:1612.01604 (2016)
  34. 34.
    F. Gay-Balmaz, C. Tronci, The hamiltonian setting of Koopman-von Neumann theory and the dynamics of hybrid classical-quantum systems, https://doi.org/arXiv:1802.04787 (2018)
  35. 35.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C. Roos, Nature 463, 68 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    E. Gozzi, C. Pagani, Phys. Rev. Lett. 105, 150604 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    W. Greiner, Classical electrodynamics (Springer-Verlag, 1998) Google Scholar
  38. 38.
    W. Greiner, Relativistic quantum mechanics: wave equations (Springer-Verlag, 2000) Google Scholar
  39. 39.
    R. Hakim, Introduction to relativistic statistical mechanics (World Scientific, 2011) Google Scholar
  40. 40.
    R. Hakim, J. Heyvaerts, Phys. Rev. A 18, 1250 (1978) ADSCrossRefGoogle Scholar
  41. 41.
    R. Hakim, H. Sivak, Ann. Phys. 139, 230 (1982) ADSCrossRefGoogle Scholar
  42. 42.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    D. Hestenes, J. Math. Phys. 15, 1768 (1974) ADSCrossRefGoogle Scholar
  44. 44.
    D. Hestenes, New foundations for classical mechanics (Springer, 1999) Google Scholar
  45. 45.
    K. Jacobs, Quantum measurement theory and its applications (Cambridge University Press, 2014) Google Scholar
  46. 46.
    M. Katsnelson, K. Novoselov, A. Geim, Nat. Phys. 2, 620 (2006) CrossRefGoogle Scholar
  47. 47.
    S.-I. Koda, J. Chem. Phys. 144, 154108 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    B.O. Koopman, Proc. Nat. Acad. Sci. 17, 315 (1931) ADSCrossRefGoogle Scholar
  49. 49.
    K. Kowalski, J. Rembieliński, Ann. Phys. 375, 1 (2016) ADSCrossRefGoogle Scholar
  50. 50.
    H. Krüger, Found. Phys. 23, 1265 (1993) ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    P. Kustaanheimo, E. Stiefel, J. Math. Bd 218, 27 (1965) Google Scholar
  52. 52.
    W. Liu, Phys. Chem. Chem. Phys. 14, 35 (2012) CrossRefGoogle Scholar
  53. 53.
    P. Lounesto, in Clifford algebras and spinors (Cambridge University Press, 2001), Vol. 286 Google Scholar
  54. 54.
    S. Mane, Y.M. Shatunov, K. Yokoya, Rep. Prog. Phys. 68, 1997 (2005) ADSCrossRefGoogle Scholar
  55. 55.
    D. Mauro, Topics in Koopman-von Neumann Theory, PhD thesis, Università degli Studi di Trieste, 2002 Google Scholar
  56. 56.
    K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Nature 438, 197 (2005) ADSCrossRefGoogle Scholar
  57. 57.
    J. Otterbach, R. Unanyan, M. Fleischhauer, Phys. Rev. Lett. 102, 063602 (2009) ADSCrossRefGoogle Scholar
  58. 58.
    J. Pedernales, R. Di Candia, D. Ballester, E. Solano, New J. Phys. 15, 055008 (2013) ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Radonjić, D. Popović, S. Prvanović, N. Burić, Phys. Rev. A 89, 024104 (2014) ADSCrossRefGoogle Scholar
  60. 60.
    J. Schwinger, B.-G. Englert, Quantum Mechanics: Symbolism of Atomic Measurements (Springer Science & Business Media, 2001) Google Scholar
  61. 61.
    B. Shanahan, A. Chenu, N. Margolus, A. Del Campo, Phys. Rev. Lett. 120, 070401 (2018) ADSCrossRefGoogle Scholar
  62. 62.
    G. Shin, I. Bialynicki-Birula, J. Rafelski, Phys. Rev. A 46, 645 (1992) ADSCrossRefGoogle Scholar
  63. 63.
    G. Shin, J. Rafelski, Phys. Rev. A 48, 1869 (1993) ADSCrossRefGoogle Scholar
  64. 64.
    H. Spohn, Ann. Phys. 282, 420 (2000) ADSCrossRefGoogle Scholar
  65. 65.
    J. Vaishnav, C.W. Clark, Phys. Rev. Lett. 100, 153002 (2008) ADSCrossRefGoogle Scholar
  66. 66.
    S. Varró, J. Javanainen, J. Opt. B: Quant. Semiclassical Opt. 5, S402 (2003) ADSCrossRefGoogle Scholar
  67. 67.
    D. Vasak, M. Gyulassy, H. Elze, Ann. Phys. 173, 462 (1987) ADSCrossRefGoogle Scholar
  68. 68.
    J. von Neumann, Ann. Math. 33, 587 (1932) MathSciNetCrossRefGoogle Scholar
  69. 69.
    J. von Neumann, Ann. Math. 33, 789 (1932) MathSciNetCrossRefGoogle Scholar
  70. 70.
    S.L. Vuglar, D.V. Zhdanov, R. Cabrera, T. Seideman, C. Jarzynski, D.I. Bondar, Quantum statistical forces via reservoir engineering, https://doi.org/arXiv:1611.02736 (2016)
  71. 71.
    M. Wen, H. Bauke, C.H. Keitel, Sci. Rep. 6, 31624 (2016) ADSCrossRefGoogle Scholar
  72. 72.
    D.V. Zhdanov, D.I. Bondar, T. Seideman, Quantum friction: environment engineering perspectives, https://doi.org/arXiv:1612.00573 (2016)
  73. 73.
    D.V. Zhdanov, D.I. Bondar, T. Seideman, Phys. Rev. Lett. 119, 170402 (2017) ADSCrossRefGoogle Scholar
  74. 74.
    D.V. Zhdanov, T. Seideman, Phys. Rev. A 92, 012129 (2015) ADSCrossRefGoogle Scholar
  75. 75.
    W.H. Zurek, Phys. Today 44, 36 (1991) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Princeton UniversityPrincetonUSA
  2. 2.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Tulane UniversityNew OrleansUSA

Personalised recommendations