Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 10–11, pp 1243–1250 | Cite as

Impact of lag information on network inference

  • Nicolás Rubido
  • Cristina MasollerEmail author
Regular Article
Part of the following topical collections:
  1. Advances in Nonlinear Dynamics of Complex Networks: Adaptivity, Stochasticity, Delays

Abstract

Extracting useful information from data is a fundamental challenge across disciplines as diverse as climate, neuroscience, genetics, and ecology. In the era of “big data,” data is ubiquitous, but appropriate methods are needed for gaining reliable information from the data. In this work, we consider a complex system, composed by interacting units, and aim at inferring which elements influence each other, directly from the observed data. The only assumption about the structure of the system is that it can be modeled by a network composed by a set of N units connected with L un-weighted and un-directed links, however, the structure of the connections is not known. In this situation, the inference of the underlying network is usually done by using interdependency measures, computed from the output signals of the units. We show, using experimental data recorded from randomly coupled electronic Rössler chaotic oscillators, that the information of the lag times obtained from bivariate cross-correlation analysis can be useful to gain information about the real connectivity of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Margolin, I. Nemenman, K. Basso et al., BMC Bioinform. 7, S7 (2006) CrossRefGoogle Scholar
  2. 2.
    M. Timme, Phys. Rev. Lett. 98, 224101 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    W.X. Wang, Y.C. Lai, C. Grebogi et al., Phys. Rev. X 1, 021021 (2011) Google Scholar
  4. 4.
    N. Rubido, A.C. Marti, E. Bianco-Martinez et al., New J. Phys. 16, 093010 (2014) CrossRefGoogle Scholar
  5. 5.
    E. Bianco-Martínez, N. Rubido, Ch.G. Antonopoulos, M.S. Baptista, Chaos 26, 043102 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    G. Tirabassi, R. Sevilla-Escoboza, J.M. Buldú, C. Masoller, Sci. Rep. 5, 10829 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Donges, J. Heitzig, B. Beronov et al., Chaos 25, 113101 (2015) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Wiedermann, J.F. Donges, J. Kurths et al., Phys. Rev. E 93, 042308 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    A. Pikovsky, Phys. Rev. E 93, 062313 (2016) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Cestnik, M. Rosenblum, Phys. Rev. E 96, 012209 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    E.A. Martin, J. Hlinka, A. Meinke et al., Sci. Rep. 7, 7062 (2017) ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Stolz, H.A. Harrington, M.A. Porter, Chaos 27, 047410 (2017) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Casadiego, N. Nitzan, S. Hallerberg et al., Nat. Commun. 8, 2192 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    E.S.C. Ching, H.C. Tam, Phys. Rev. E 95, 010301 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    L. Li, D.Xu, H. Peng et al., Sci. Rep. 7, 15036 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    V.M. Eguiluz, D.R. Chialvo, G.A. Cecchi et al., Phys. Rev. Lett. 94, 018102 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    B.T. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009) CrossRefGoogle Scholar
  18. 18.
    K. Lehnertz, G. Ansmann, S. Bialonski et al., Physica D 267, 7 (2014) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 174, 157 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    S. Bialonski, M.T. Horstmann, K. Lehnertz, Chaos 20, 013134 (2010) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.I. Deza, M. Barreiro, C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Olden, B.D. Neff, Marine Biol. 138, 1063 (2001) CrossRefGoogle Scholar
  25. 25.
    C. Curme, Lagged correlation networks, Doctoral dissertation, Boston University, 2015 Google Scholar
  26. 26.
    P. Damos, Stoch. Environ. Res. Risk Assess. 30, 1063 (2001) Google Scholar
  27. 27.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  28. 28.
    R. Sevilla-Escoboza, J.M. Buldú, Data Brief 7, 1185 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física de la Facultad de Ciencias (IFFC), Universidad de la RepúblicaMontevideoUruguay
  2. 2.Departament de Física, Universitat Politécnica de CatalunyaTerrassa, BarcelonaSpain

Personalised recommendations