Advertisement

Thermoelectric transport through interacting quantum dots in graphene

  • José Ramón Isern-Lozano
  • Jong Soo Lim
  • Ioan Grosu
  • Rosa López
  • Mircea Crisan
  • David SánchezEmail author
Regular Article
  • 23 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

We study the thermoelectric properties of an electronic localized level coupled to two graphene electrodes. Graphene band structure shows a pseudogap density of states (DOS) that strongly affects the charge transport. We focus on the Coulomb blockade regime and derive the expression for the Onsager matrix that relates the charge and heat currents to the voltage and temperature biases in the linear response regime. The elements of the Onsager matrix are functions of the transmission coefficient, which depends on the dot Green’s function. Our self-consistent calculation of the Green’s function is based on the equation-of-motion technique. We find a double-peak structure for the electric and thermal responses as the dot level is tuned with an external gate terminal, in accordance with the Coulomb blockade phenomenon. Remarkably enough, the thermal conductance is much smaller than its electric counterpart, giving rise to a high thermoelectric figure of merit for certain values of the gate voltage. Finally, we discuss a large departure from the Wiedemann–Franz law caused mainly by the pseudogap DOS in the contacts and weakly affected by interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    D. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    C.E. Nebel, Nat. Mater. 12, 690 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    M.B. Lundeberg, J.A. Folk, Science 346, 422 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, K. Ensslin, Appl. Phys. Lett. 92, 012102 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    C. Stampfer, E. Schurtenberger, F. Molitor, J. Guettinger, T. Ihn, K. Ensslin, Nano Lett. 8, 2378 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    F. Sols, F. Guinea, A.H.C. Neto, Phys. Rev. Lett. 99, 166803 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    R. Murali, Graphene Nanoelectronics: From Materials to Circuits (Springer-Verlag, NY, 2012) Google Scholar
  10. 10.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993) Google Scholar
  11. 11.
    S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    M. Hentschel, F. Guinea, Phys. Rev. B 76, 115407 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    A.H.C. Neto, V. Kotov, J. Nilsson, V. Pereira, N.M.R. Peres, B. Uchoa, Solid State Commun. 149, 1094 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    B. Uchoa, L. Yang, S.W. Tsai, N.M.R. Peres, A.H.C. Neto, Phys. Rev. Lett. 103, 206804 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    M. Vojta, L. Fritz, R. Bulla, Europhys. Lett. 90, 27006 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    K.H. Ding, A.G. Zhu, J. Berakdar, Phys. Rev. B 84, 115433 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    K. Saha, I. Paul, K. Sengupta, Phys. Rev. B 81, 165446 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    S.P. Chao, V. Aji, Phys. Rev. B 83, 165449 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    M. Kharitonov, G. Kotliar, Phys. Rev. B 88, 201103 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    A.K. Mitchell, M. Vojta, R. Bulla, L. Fritz, Phys. Rev. B 88, 195119 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    L. Fritz, M. Vojta, Rep. Prog. Phys. 76, 032501 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    Y.V. Nazarov, Y.M. Blanter, Quantum Transport (Cambridge University Press, Cambridge, 2009) Google Scholar
  24. 24.
    N.A. Zimbovskaya, M.R. Pederson, Phys. Rep. 509, 1 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    W. Liang, M. Bockrath, H. Park, Phys. Rev. Lett. 88, 126801 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Balandin, Nat. Mater. 10, 569 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    Y.M. Zuev, W. Chang, P. Kim, Phys. Rev. Lett. 102, 096807 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Phys. Rev. Lett. 102, 166808 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    M.I. Alomar, D. Sánchez, Phys. Rev. B 89, 115422 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    M. Inglot, V.K. Dugaev, J. Barnaś, Phys. Rev. B 92, 085418 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    D. Sánchez, H. Linke, New J. Phys. 16, 110201 (2014) CrossRefGoogle Scholar
  33. 33.
    D. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) CrossRefGoogle Scholar
  34. 34.
    C. Lacroix, J. Phys. F 11, 2389 (1981) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993) ADSCrossRefGoogle Scholar
  36. 36.
    V. Kashcheyevs, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 73, 125338 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    T. Aono, J. Phys. Soc. Jpn. 82, 083703 (2013) ADSCrossRefGoogle Scholar
  38. 38.
    Z.-G. Zhu, K.-H. Ding, J. Berakdar, Europhys. Lett. 90, 67001 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    L. Onsager, Phys. Rev. 37, 405 (1931) ADSCrossRefGoogle Scholar
  40. 40.
    G.D. Mahan, Many-Particle Physics, 3rd edn. (Springer, NY, 2007) Google Scholar
  41. 41.
    P.N. Butcher, J. Phys.: Condens Matter 2, 4869 (1990) ADSGoogle Scholar
  42. 42.
    J. Matthews, D. Sánchez, M. Larsson, H. Linke, Phys. Rev. B 85, 205309 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    H. Sevincli, C. Sevik, T. Cağin, G. Cuniberti, Sci. Rep. 3, 035405 (2011) Google Scholar
  44. 44.
    B. Kubala, J. König, J. Pekola, Phys. Rev. Lett. 100, 066801 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    M. Eich, F. Herman, R. Pisoni, H. Overweg, Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, M. Sigrist, T. Ihn, K. Ensslin, Phys. Rev. X 8, 031023 (2018) Google Scholar
  46. 46.
    D. Sánchez, R. López, C.R. Physique 17, 1060 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC)Palma de MallorcaSpain
  2. 2.Department of Theoretical PhysicsUniversity of ClujCluj-NapocaRomania
  3. 3.School of Physics, Korea Institute for Advanced StudySeoulKorea

Personalised recommendations