Advertisement

Multiscale cyclic dynamics in light harvesting complex in presence of vibrations and noise

  • Shmuel GurvitzEmail author
  • Gennady P. Berman
  • Richard T. Sayre
Regular Article
  • 3 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Starting from the many-body Schrödinger equation, we derive a new type of Lindblad master equations describing a cyclic exciton/electron dynamics in the light harvesting complex and the reaction center. These equations resemble the master equations for the electric current in mesoscopic systems, and they go beyond the single-exciton description by accounting for the multi-exciton states accumulated in the antenna, as well as the charge-separation, fluorescence and photo-absorption. Although these effects take place on very different timescales, their inclusion is necessary for a consistent description of the exciton dynamics. Our approach reproduces both coherent and incoherent dynamics of exciton motion along the antenna in the presence of vibrational modes and noise. We applied our results to evaluate energy (exciton) and fluorescent currents as functions of sunlight intensity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mohseni, Y. Omar, G.S. Engel, M.B. Plenio (Eds.), Quantum Effects in Biology (Cambridge University Press, Cambridge, 2014) Google Scholar
  2. 2.
    F. Caycedo-Soler, F.J. Rodríguez, L. Quiroga, Phys. Rev. Lett. 104, 158302 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    B. Brüggemann, V. May, J. Chem. Phys. 118, 746 (2003) Google Scholar
  4. 4.
    D. Abramavicius, S. Mukamel, J. Chem. Phys. 133, 064510 (2010) Google Scholar
  5. 5.
    S.A. Gurvitz, Ya.S. Prager, Phys. Rev. B 53, 15932 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Gurvitz, Phys. Rev. B 56, 15215 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Gurvitz, Phys. Rev. B 57, 6602 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    S. Gurvitz, Front. Phys. 12, 120303 (2017) CrossRefGoogle Scholar
  9. 9.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer-Verlag, Berlin, Heidelberg, 2008) Google Scholar
  10. 10.
    U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993) Google Scholar
  11. 11.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  12. 12.
    N. Killoran, S.F. Huelga, M.B. Plenio, J. Chem. Phys. 143, 155102 (2015) Google Scholar
  13. 13.
    J. Bergli, Y.M. Galperin, B.L. Altshuler, New J. Phys. 11, 025002 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    A. Aharony, S. Gurvitz, O. Entin-Wohlman, S. Dattagupta, Phys. Rev. B 82, 245417 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    S. Gurvitz, A.I. Nesterov, G.P. Berman, J. Phys. A: Math. Theor. 50, 365601 (2017) Google Scholar
  16. 16.
    V.E. Shapiro, V.M. Loginov, Physica A 91, 563 (1978) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Gurvitz, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 94, 075437 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shmuel Gurvitz
    • 1
    • 2
    Email author
  • Gennady P. Berman
    • 3
  • Richard T. Sayre
    • 4
  1. 1.Department of Particle Physics and AstrophysicsWeizmann InstituteRehovotIsrael
  2. 2.Center for Nonlinear StudiesLos AlamosUSA
  3. 3.Theoretical Division, T-4Los Alamos National LaboratoryLos AlamosUSA
  4. 4.New Mexico ConsortiumLos AlamosUSA

Personalised recommendations