Advertisement

Towards verified numerical renormalization group calculations

  • Peter SchmitteckertEmail author
Regular Article
  • 5 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Numerical approaches are an important tool to study strongly correlated quantum systems. However, their fragility with respect to rounding errors is not well studied and numerically verified enclosures of the results are not available. In this work, we apply interval arithmetic to the well established numerical renormalization group scheme. This extension enables us to provide a numerically verified NRG excitation spectrum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    K.G. Wilson, Adv. Math. 16, 170 (1975) CrossRefGoogle Scholar
  3. 3.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997) Google Scholar
  4. 4.
    R. Bulla, T. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    R. ŽZitko, T. Pruschke, Phys. Rev. B 79, 085106 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    W.J. de Haas, G.J. van den Berg, Physica 3, 440 (1936) ADSCrossRefGoogle Scholar
  7. 7.
    J. Kondo, Prog. Theor. Phys. 32, 37 (1964) ADSCrossRefGoogle Scholar
  8. 8.
    J. Kondo, Solid State Phys. 23, 183 (1969) CrossRefGoogle Scholar
  9. 9.
    N. Andrei, Phys. Rev. Lett. 45, 379 (1980) ADSCrossRefGoogle Scholar
  10. 10.
    P.B. Vigman, Sov. Phys. JETP Lett. 3, 392 (1980) Google Scholar
  11. 11.
    D. Goldhaber-Gordon, J. Gores, M.A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. Lett. 81, 5225 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    P. Schmitteckert, A discrete energy space induced fermion parity breaking fixed point of the Kondo model, https://doi.org/arXiv:1803.08480
  15. 15.
    R.E. Moore, Interval Analysis (Prentice Hall, Englewood Cliffs, NJ, 1966) Google Scholar
  16. 16.
    G. Alefeld, J. Herzberger, Introduction to Interval Computations (Academic Press, New York, 1983) Google Scholar
  17. 17.
  18. 18.
    M. Lerch, G. Tischler, W.V. Gudenberg, W. Hofschuster, W. Krämer, ACM Trans. Math. Softw. 32, 299 (2006) CrossRefGoogle Scholar
  19. 19.
    P. Schmitteckert, Zur Theorie Korrelierter Elektronensysteme: Dynamik von Einteilchen- und Kollektivanregungen (Diplomarbeit, Universität Karlsruhe (TH), 1992) Google Scholar
  20. 20.
    R. Žitko, Phys. Rev. B 84, 085142 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    G. Guennebaud, B. Jacob et al., Eigen v3 (2010), https://doi.org/eigen.tuxfamily.org
  22. 22.
    R.M. Stallman, et al., Using the GNU Compiler Collection (Free Software Foundation, Boston, 2012), https://doi.org/gcc.gnu.org

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Theoretische Physik I, Physikalisches Institut, Am Hubland Universität WürzburgWürzburgGermany

Personalised recommendations