Equilibrium and nonequilibrium thermodynamics of a photon gas in the near field

  • Agustín Pérez-Madrid
  • Luciano C. LapasEmail author
  • J. Miguel Rubi
Regular Article
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics


In this paper, we study the near-field thermodynamics of a photon gas at equilibrium as well as out-of-equilibrium in the presence of dissipative effects. As a consequence of Heisenberg’s uncertainty principle, we are able to eliminate the low-frequency modes in both cases, providing an analytical expression for the near-field entropy. In addition, we obtain the entropic-force contributions to the Casimir effect. At zero temperature the well-known l−4 behavior of the pressure is obtained. In the nonequilibrium case, we compute the entropy production, showing that the excess of heat in each bodies must be dissipated into the respective thermal reservoirs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Landau, E.M. Lifshitz, in Electrodynamics of Continuous Media, Course of Theoretical Physics, 2nd edn. (Pergamon, Amsterdam, 1984), Vol. 8 Google Scholar
  2. 2.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951) ADSCrossRefGoogle Scholar
  3. 3.
    I. Latella, A. Perez-Madrid, L.C. Lapas, J.M. Rubi, J. Appl. Phys. 115, 124307 (2014) Google Scholar
  4. 4.
    I. Latella, A. Pérez-Madrid, J.M. Rubi, S.-A. Biehs, P. Ben-Abdallah, Phys. Rev. Appl. 4, 011001 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, R. Messina, Phys. Rev. B 95, 205404 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    F. Intravaia, C. Henkel, M. Antezza, Lect. Notes Phys. 834, 345 (2011) CrossRefGoogle Scholar
  7. 7.
    L.C. Lapas, A. Pérez-Madrid, J.M. Rubí, Phys. Rev. Lett. 116, 110601 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    A.W. Rodriguez, F. Capasso, S.G. Johnson, Nat. Photonics 5, 211 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Krause, R.S. Decca, D. López, E. Fischbach, Phys. Rev. Lett. 98, 050403 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    A. Pérez-Madrid, L.C. Lapas, J.M. Rubí, PLoS One 8, 1 (2013) CrossRefGoogle Scholar
  12. 12.
    Y.V. Denisov, A.P. Rylev, JETP Lett. 52, 411 (1990) ADSGoogle Scholar
  13. 13.
    A.I. Chumakov et al., Phys. Rev. Lett. 106, 225501 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, in Statistical Physics, Part 2, Course of Theoretical Physics, 3rd edn. (Pergamon, Amsterdam, 1980), Vol. 9 Google Scholar
  15. 15.
    A. Einstein, Phys. Z. 18, 121 (1917) Google Scholar
  16. 16.
    H.R. Lewis, Am. J. Phys. 41, 38 (1973) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de BarcelonaBarcelonaSpain
  2. 2.Interdisciplinary Center for Natural Sciences, Universidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil

Personalised recommendations