Advertisement

Quantifying the impact of phonon scattering on electrical and thermal transport in quantum dots

  • Bahareh Goldozian
  • Gediminas Kiršanskas
  • Fikeraddis A. Damtie
  • Andreas WackerEmail author
Open Access
Regular Article
  • 31 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

We report the inclusion of phonon scattering to our recently established numerical package QmeQ for transport in quantum dot systems. This enables straightforward calculations for a large variety of devices. As examples we show (i) transport in a double-dot structure, where energy relaxation is crucial to match the energy difference between the levels, and (ii) the generation of electrical power by contacting cold electric contacts with quantum dot states, which are subjected to heated phonons.

References

  1. 1.
    M.H. Devoret, D. Esteve, C. Urbina, Nature 360, 547 (1992) ADSCrossRefGoogle Scholar
  2. 2.
    S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    L.P. Kouwenhoven et al., Science 278, 1788 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    C. Thelander et al., Mater. Today 9, 28 (2006) CrossRefGoogle Scholar
  6. 6.
    A.I. Boukai et al., Nature 451, 168 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    R. Agarwal, C. Lieber, Appl. Phys. A 85, 209 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, PNAS 111, 13786 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    M. Karimi et al., Nano Lett. 18, 365 (2018) ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    D.V. Averin, A.N. Korotkov, K.K. Likharev, Phys. Rev. B 44, 6199 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987) ADSCrossRefGoogle Scholar
  13. 13.
    R.C. Ashoori, Nature 379, 413 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    L.P. Kouwenhoven et al., Z. Phys. B 85, 367 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Averin, K.K. Likharev, J. Low Temp. Phys. 62, 345 (1986) ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Gurvitz, Y.S. Prager, Phys. Rev. B 53, 15932 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Stroscio, K.W. Kim, S. Yu, A. Ballato, J. Appl. Phys. 76, 4670 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    F. Vaurette et al., Appl. Phys. Lett. 92, 242109 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    C. Weber et al., Phys. Rev. Lett. 104, 036801 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    D.M.-T. Kuo, Y.-C. Chang, Phys. Rev. B 81, 205321 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    J. Azema, P. Lombardo, A.-M. Daré, Phys. Rev. B 90, 205437 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    M. Leijnse, M.R. Wegewijs, K. Flensberg, Phys. Rev. B 82, 045412 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    L. Henriet, A.N. Jordan, K. Le Hur, Phys. Rev. B 92, 125306 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    H. Bruus, K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, New York, 2004) Google Scholar
  25. 25.
    C. Timm, Phys. Rev. B 77, 195416 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Ryndyk, R. Gutiérrez, B. Song, G. Cuniberti, Green function techniques in the treatment of quantum transport at the molecular scale, in Energy Transfer Dynamics in Biomaterial Systems, edited by I. Burghardt, V. May, D.A. Micha, E.R. Bittner (Springer-Verlag, Berlin, Heidelberg, 2009), pp. 213–335 Google Scholar
  27. 27.
    G. Schaller, Open Quantum Systems far from Equilibrium (Springer, Heidelberg, 2014) Google Scholar
  28. 28.
    G. Kiršanskas, J.N. Pedersen, O. Karlström, M. Leijnse, A. Wacker, Comput. Phys. Commun. 221, 317 (2017) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    B. Sothmann, R. Sanchez, A.N. Jordan, M. Büttiker, New J. Phys. 15, 095021 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    H.-P. Breuer, F. Petruccione, Open Quantum Systems (Oxford University Press, Oxford, 2006) Google Scholar
  31. 31.
    R.K. Wangsness, F. Bloch, Phys. Rev. 89, 728 (1953) ADSCrossRefGoogle Scholar
  32. 32.
    A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957) CrossRefGoogle Scholar
  33. 33.
    J.N. Pedersen, A. Wacker, Phys. Rev. B 72, 195330 (2005) ADSCrossRefGoogle Scholar
  34. 34.
    J.N. Pedersen, A. Wacker, Physica E 42, 595 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  36. 36.
    G. Kiršanskas, M. Franckié, A. Wacker, Phys. Rev. B 97, 035432 (2018) ADSCrossRefGoogle Scholar
  37. 37.
    N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Phys. Rev. B 40, 11834 (1989) ADSCrossRefGoogle Scholar
  38. 38.
    G. Lindwall, A. Wacker, C. Weber, A. Knorr, Phys. Rev. Lett. 99, 087401 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    B. Goldozian, F.A. Damtie, G. Kiršanskas, A. Wacker, Sci. Rep. 6, 22761 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    K. Ono, D.G. Austing, Y. Tokura, S. Tarucha, Science 297, 1313 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    A.C. Johnson, J.R. Petta, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. B 72, 165308 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    J.-H. Jiang, Y. Imry, Phys. Rev. Appl. 7, 064001 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    O. Entin-Wohlman, D. Chowdhury, A. Aharony, S. Dattagupta, Phys. Rev. B 96, 195435 (2017) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Mathematical Physics and NanoLund, Lund UniversityLundSweden

Personalised recommendations