Noisy hodgepodge machine and the observed mesoscopic behavior in the non-stirred Belousov–Zhabotinsky reaction

Optimal noise and hidden noise in the hodgepodge machine
  • Dalibor Štys
  • Renata RychtárikováEmail author
  • Anna Zhyrova
  • Kryštof M. Štys
  • Petr Jizba
Regular Article
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics


In this paper, we have modified one of the simplest multi-level cellular automata – a hodgepodge machine, so as to represent the best match for the chemical trajectory observed in the Belousov–Zhabotinsky reaction (BZR) in a thin layered planar setting. By introducing a noise term into the model, we were able to transform the central regular structure into the circular target pattern. We further analyze influences of the neighborhood (diffusion process) and internal excitation type of noise. We find that the configurations of ignition points, which give the target patterns, occur only in the interval of the neighborhood excitation noise from 30% to 34% and at the internal excitation noise of 12%. We argue that the BZR occurs on a semi-regular grid – a chemical analogy to a Bénard cell in the viscous fluid, and we discuss the size of the relevant elementary cell. In this way, the BZR is a quintessential example of mesoscopic process, in particular, it does follow neither the deterministic rules of the microscopic system nor the tenet of Boltzmannian statistic physics that only the most frequent events are observed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material


  1. 1.
    V.K. Vanag, Physics–Uspekhi 42, 413 (1999) ADSGoogle Scholar
  2. 2.
    M. Gerhardt, H. Schuster, J.J. Tyson, Science 30, 1563 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    S. Hiltemann, Multi-coloured cellular automata, Bachelor thesis, Erasmus Universiteit, Rotterdam, The Netherlands, 2008 Google Scholar
  4. 4.
    D. Štys, T. Náhlík, A. Zhyrova, R. Rychtáriková, Š. Papáček, P. Císař, in HPCSE 2015, Lect. Notes Comp. Sci. 9611, 171 (2016) Google Scholar
  5. 5.
    A.K. Dewdney, Sci. Am. 225, 104 (1988) CrossRefGoogle Scholar
  6. 6.
    J. García-Ojalvo, L. Schimansky-Geier, Europhys. Lett. 47, 298 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    R. FitzHugh, Bull. Math. Biophys. 17, 257 (1955) CrossRefGoogle Scholar
  8. 8.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962) CrossRefGoogle Scholar
  9. 9.
    A. Wuensche, Exploring discrete dynamics (Luniver Press, 2011) Google Scholar
  10. 10.
    A.V. Getling, Rayleigh-Bénard convection: structures and dynamics (World Scientific, 1998) Google Scholar
  11. 11.
  12. 12.
    U. Wilensky, NetLogo B-Z Reaction model (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 2003),
  13. 13.
    M. Blasone, P. Jizba, G. Vitiello, Quantum field theory and its macroscopic manifestations. Boson condensation, ordered patterns and topological defects (Imperial College Press, Cambridge, UK, 2011) Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dalibor Štys
    • 1
  • Renata Rychtáriková
    • 1
    Email author
  • Anna Zhyrova
    • 1
  • Kryštof M. Štys
    • 1
  • Petr Jizba
    • 2
  1. 1.University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Kompetenzzentrum MechanoBiologie in Regenerativer Medizin, Institute of Complex SystemsNové HradyCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in PraguePrague 1Czech Republic

Personalised recommendations