Advertisement

Full counting statistics of information content

  • Yasuhiro UtsumiEmail author
Review
  • 12 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

We review connections between the cumulant generating function of full counting statistics of particle number and the Rényi entanglement entropy. We calculate these quantities based on the fermionic and bosonic path-integral defined on multiple Keldysh contours. We relate the Rényi entropy with the information generating function, from which the probability distribution function of self-information is obtained in the nonequilibrium steady state. By exploiting the distribution, we analyze the information content carried by a single bosonic particle through a narrow-band quantum communication channel. The ratio of the self-information content to the number of bosons fluctuates. For a small boson occupation number, the average and the fluctuation of the ratio are enhanced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    L.S. Levitov, H.W. Lee, G.B. Lesovik, J. Math. Phys. 37, 4845 (1996) Google Scholar
  3. 3.
    Quantum Noise in Mesoscopic Physics, in NATO Science Series II: Mathematics, Physics and Chemistry, edited by Yu.V. Nazarov (Kluwer Academic Publishers, Dordrecht/ Boston/ London, 2003), Vol. 97 Google Scholar
  4. 4.
    D.A. Bagrets, Y. Utsumi, D.S. Golubev, G. Schön, Fortschritte der Physik 54, 917 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    See, e.g., R.V. Hogg, J.W. McKean, A.T. Craig, in Introduction to Mathematical Statistics, 6th edn. (Pearson Education, Upper Saddle River, New Jersey, 2005) Google Scholar
  6. 6.
    C.W.J. Beenakker, in Proceedings of the International School of Physics Enrico Fermi (IOS Press, Amsterdam, 2006), Vol. 162 Google Scholar
  7. 7.
    C.E. Shannon, Bell Syst. Technol. J. 27, 379 (1948) Google Scholar
  8. 8.
    T.M. Cover, J.A. Thomas, in Elements of Information Theory, 2nd edn. (Wiley-, New York, 2006) Google Scholar
  9. 9.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000) Google Scholar
  10. 10.
    I. Klich, L.S. Levitov, Phys. Rev. Lett. 102, 100502 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    H. Francis Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, K. Le Hur, Phys. Rev. B 85, 035409 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    R. Süsstrunk, D.A. Ivanov, EPL 100, 60009 (2012) Google Scholar
  13. 13.
    P. Calabrese, M. Mintchev, E. Vicari, EPL 98, 20003 (2012) Google Scholar
  14. 14.
    B. Hsu, E. Grosfeld, E. Fradkin, Phys. Rev. B 80, 235412 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability (University of California Press, Berkeley, CA, 1960), p. 547 Google Scholar
  16. 16.
    Y.V. Nazarov, Phys. Rev. B 84, 205437 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    M.H. Ansari, Y.V. Nazarov, Phys. Rev. B 91, 174307 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    M.H. Ansari, Y.V. Nazarov, ZhETF 149, 453 (2016) Google Scholar
  19. 19.
  20. 20.
    M.H. Ansari, Phys. Rev. B 95, 174302 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Utsumi, Phys. Rev. B 92, 165312 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Utsumi, Phys. Rev. B 96, 085304 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    H. Casini, M. Huerta, J. Phys. A 42, 504007 (2009) MathSciNetGoogle Scholar
  24. 24.
    H. Casini, M. Huerta, https://doi.org/arXiv:0905.2562v3
  25. 25.
    Y. Yamomoto, H.A. Haus, Rev. Mod. Phys. 58, 1001 (1986) ADSCrossRefGoogle Scholar
  26. 26.
    H. Touchette, Phys. Rep. 478, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R.M. Fano, Transmission of Information: A Statistical Theory of Communications (The M.I.T. Press, Cambridge, 1961) Google Scholar
  28. 28.
    S.W. Golomb, IEEE Trans. Inf. Theory IT-12, 75 (1966) Google Scholar
  29. 29.
    S. Guiasu, C. Reischer, Inf. Sci. 35, 235 (1985) CrossRefGoogle Scholar
  30. 30.
    G. Schön, A.D. Zaikin, Phys. Rep. 198, 237 (1990) ADSCrossRefGoogle Scholar
  31. 31.
    U. Weiss, Quantum Dissipative Systems, 4th edn. (World Scientific, Singapore, 2012) Google Scholar
  32. 32.
    A. Kamenev, Field Theory of Nonequilibrium Systems (Cambridge University Press, Cambridge, 2011) Google Scholar
  33. 33.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison Wesley, Redwood City, CA, 1988) Google Scholar
  34. 34.
    M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Utsumi, D.S. Golubev, G. Schön, Phys. Rev. Lett. 96, 086803 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    K. Saito, Y. Utsumi, Phys. Rev. B 78, 115429 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Utsumi, K. Saito, Phys. Rev. B 79, 235311 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    D.F. Urban, R. Avriller, A. Levy Yeyati, Phys. Rev. B 82, 121414(R) (2010) ADSCrossRefGoogle Scholar
  39. 39.
    T. Novotný, F. Haupt, W. Belzig, Phys. Rev. B 84, 113107 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    Y. Utsumi, O. Entin-Wohlman, A. Ueda, A. Aharony, Phys. Rev. B 87, 115407 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    A. Petrescu, H.F. Song, S. Rachel, Z. Ristivojevic, C. Flindt, N. Laflorencie, I. Klich, N. Regnault, K. Le Hur, J. Stat. Mech. 2014, P10005 (2014) Google Scholar
  42. 42.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997) ADSCrossRefGoogle Scholar
  43. 43.
    M. Campisi, P. Hänggi, M. Talkner, Rev. Mod. Phys. 83, 771 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    A.G. Abanov, D.A. Ivanov, Phys. Rev. B 79, 205315 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    A.G. Abanov, D.A. Ivanov, Phys. Rev. Lett. 100, 086602 (2008) ADSCrossRefGoogle Scholar
  46. 46.
    W. Xiang-bin, Phys. Rev. A 66, 024303 (2002) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    G. Verley, M. Esposito, T. Willaert, C. Van den Broeck, Nat. Commun. 5, 4721 (2014) ADSCrossRefGoogle Scholar
  48. 48.
    G. Verley, T. Willaert, C. Van den Broeck, M. Esposito, Phys. Rev. E 90, 052145 (2014) ADSCrossRefGoogle Scholar
  49. 49.
    M. Polettini, G. Verley, M. Esposito, Phys. Rev. Lett. 114, 050601 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    K. Proesmans, Y. Dreher, M. Gavrilov, J. Bechhoefer, C. Van den Broeck, Phys. Rev. X 6, 041010 (2016) Google Scholar
  51. 51.
    H. Okada, Y. Utsumi, J. Phys. Soc. Jpn. 86, 024007 (2017) CrossRefGoogle Scholar
  52. 52.
    H.M. Wiseman, J.A. Vaccaro, Phys. Rev. Lett. 91, 097902 (2003) ADSCrossRefGoogle Scholar
  53. 53.
    I. Klich, L.S. Levitov, https://doi.org/arXiv:0812.0006
  54. 54.
    G.-M. Tang, J. Wang, Phys. Rev. B 90, 195422 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    R. Seoane Souto, R. Avriller, R.C. Monreal, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. B 92, 125435 (2015) ADSCrossRefGoogle Scholar
  56. 56.
    R. Seoane Souto, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. Lett. 117, 267701 (2016) ADSCrossRefGoogle Scholar
  57. 57.
    R. Seoane Souto, A. Martín-Rodero, A. Levy Yeyati, Phys. Rev. B 96, 165444 (2017) ADSCrossRefGoogle Scholar
  58. 58.
    Y. Utsumi, H. Imamura, M. Hayashi, H. Ebisawa, Phys. Rev. B 66, 024513 (2002) ADSCrossRefGoogle Scholar
  59. 59.
    R.P. Feynman, A.R. Hibbs, D.F. Styer, Quantum Mechanics and Path Integrals: Emended Edition (Dover, Mineola, New York, 2010) Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics EngineeringFaculty of Engineering, Mie UniversityTsu, MieJapan

Personalised recommendations