Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 959–970 | Cite as

Spiral attractors as the root of a new type of “bursting activity” in the Rosenzweig–MacArthur model

  • Yulia V. Bakhanova
  • Alexey O. Kazakov
  • Alexander G. Korotkov
  • Tatiana A. Levanova
  • Grigory V. Osipov
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

We study the peculiarities of spiral attractors in the Rosenzweig–MacArthur model, that relates to the life-science systems and describes dynamics in a food chain “prey–predator–superpredator”. It is well-known that spiral attractors having a “teacup” geometry are typical for this model at certain values of parameters for which the system can be considered as slow–fast system. We show that these attractors appear due to the Shilnikov scenario, the first step in which is associated with a supercritical Andronov–Hopf bifurcation and the last step leads to the appearance of a homoclinic attractor containing a homoclinic loop to a saddle-focus equilibrium with two-dimension unstable manifold. It is shown that the homoclinic spiral attractors together with the slow–fast behavior give rise to a new type of bursting activity in this system. Intervals of fast oscillations for such type of bursting alternate with slow motions of two types: small amplitude oscillations near a saddle-focus equilibrium and motions near a stable slow manifold of a fast subsystem. We demonstrate that such type of bursting activity can be either chaotic or regular.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Izhikevich, Int. J. Bifurcat. Chaos 10, 1171 (2000) MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.T.M. Koper, P. Gaspard, J. Chem. Phys. 96, 7797 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    M. Kuwamura, H. Chiba, Chaos 19, 043121 (2009) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Guckenheimer, I. Lizarraga, SIAM J. Appl. Dyn. Syst. 14, 764 (2015) MathSciNetCrossRefGoogle Scholar
  5. 5.
    L.P. Shilnikov, Sov. Math. Dokl. 6, 163 (1965) Google Scholar
  6. 6.
    L.P. Shilnikov, Selecta Math. Sovietica 10, 43 (1991) MathSciNetGoogle Scholar
  7. 7.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976) ADSCrossRefGoogle Scholar
  8. 8.
    R. Vitolo, P. Glendinning, J.A.C. Gallas, Phys. Rev. E 84, 016216 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    A. Arneodo, P. Coullet, C. Tresser, J. Stat. Phys. 27, 171 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    V. Rai, R. Sreenivasan, Ecol. Modell. 69, 63 (1993) CrossRefGoogle Scholar
  11. 11.
    R. Barrio, et al., Phys. Rev. E 84, 035201 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    O.E. Rossler, Ann. NY Acad. Sci. 316, 376 (1979) ADSCrossRefGoogle Scholar
  13. 13.
    F. Argoul, A. Arneodo, P. Richetti, Phys. Lett. A 120, 2695 (1987) CrossRefGoogle Scholar
  14. 14.
    C. Letellier, P. Dutertre, B. Maheu, Chaos 5, 271 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    M.L. Rosenzweig, Am. Nat. 107, 275 (1973) CrossRefGoogle Scholar
  16. 16.
    A. Hastings, T. Powell, Ecology 72, 896 (1991) CrossRefGoogle Scholar
  17. 17.
    J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. Lond. B. 221, 87 (1984) ADSCrossRefGoogle Scholar
  18. 18.
    A. Shilnikov, M. Kolomiets, Int. J. Bifurcat. Chaos 18, 2141 (2008) CrossRefGoogle Scholar
  19. 19.
    P. Gaspard, G. Nicolis, J. Stat. Phys. 31, 499 (1983) ADSCrossRefGoogle Scholar
  20. 20.
    Y.A. Kuznetsov, S. Rinaldi, Math. Biosci. 134, 1 (1996) MathSciNetCrossRefGoogle Scholar
  21. 21.
    I.M. Ovsyannikov, L.P. Shilnikov, Soviet Math. Sbornik 130, 552 (1986) Google Scholar
  22. 22.
    V.S. Aframovich, L.P. Shilnikov, in Nonlinear Dynamics and Turbulence, edited by G.I. Barenblatt, G. Iooss, D.D. Joseph (Pitmen, Boston, 1983) Google Scholar
  23. 23.
    B. Deng, G. Hines, Chaos 12, 533 (2002) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y.A. Kuznetsov, O. De Feo, S. Rinaldi, SIAM J. Appl. Math. 62, 462 (2001) MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Muratori, S. Rinaldi, Appl. Math. Model. 15, 312 (1991) CrossRefGoogle Scholar
  26. 26.
    L.S. Pontryagin, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 21, 605 (1957) Google Scholar
  27. 27.
    S. Muratori, S. Rinaldi, SIAM J. Appl. Math. 52, 1688 (1992) MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Barrio, A. Shilnikov, J. Math. Neurosci. 1, 6 (2011) CrossRefGoogle Scholar
  29. 29.
    H.A. Braun et al., Int. J. Bifur. Chaos Appl. Sci. Eng. 8, 881 (1998) CrossRefGoogle Scholar
  30. 30.
    U. Feudel et al., Chaos 10, 231 (2000) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations