Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 731–746 | Cite as

Chaos control in biological system using recursive backstepping sliding mode control

  • Piyush Pratap Singh
  • Kshetrimayum Milan Singh
  • Binoy Krishna Roy
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

This paper puts forward the control of chaos in the biological system. A new controller based on recursive backstepping sliding mode control is proposed such that it can control the chaotic dynamics in the biological system to stabilize at any position or to track any trajectory that is a smooth function of time. A proportional integral switching surface is proposed to achieve the stability condition of the error dynamics. Unlike the open loop and open plus closed loop control techniques, the design of proposed controller does not require the parameter perturbation. The required stability condition is derived based on Lyapunov stability theory. Simulation is achieved in MATLAB environment. Numerical simulation results are presented in order to show the effective verification of the proposed controller design. Simulation results correspond that the objective of chaos control is achieved successfully.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Frohlich, Int. J. Quantum Chem. 2, 641 (1968) ADSCrossRefGoogle Scholar
  2. 2.
    H. Frohlich, F. Kremer, in Coherent Excitations in Biological Systems (Springer-Verlag, Berlin, Heidelberg, NewYork, 1983), pp. 101–142 Google Scholar
  3. 3.
    Fr. Kaiser, Z. Naturforsch. 33, 294 (1978) ADSCrossRefGoogle Scholar
  4. 4.
    S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, Int. J. Gen. Syst. 41, 329 (2012) CrossRefGoogle Scholar
  5. 5.
    S. Jafari, S.M.R.H. Golpayegani, M.R. Darabad, Commun. Nonlinear Sci. Numer. Simul. 18, 811 (2013) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, J. Neuropsychiatry Clin. Neurosci. 25, E19 (2013) CrossRefGoogle Scholar
  7. 7.
    S. Jafari, S.M.R.H. Golpayegani, S. Gharibzadeh, Front. Comput. Neurosci. 7, 1 (2013) CrossRefGoogle Scholar
  8. 8.
    Y. Shekofteh, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, S. Gharibzadeh, F. Almasganj, Commun. Nonlinear Sci. Numer. Simul. 20, 469 (2015) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Aberneth, R.J. Gooding, Physica A 507, 268 (2018) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fr. Kaiser, Radio Sci. 17, 17S (1982) ADSCrossRefGoogle Scholar
  11. 11.
    H. Frohlich, in Modern Bioelectrochemistry (Plenum Press, New York, 1986), p. 221 Google Scholar
  12. 12.
    H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi, P. Woafo, Chaos Soliton. Fract. 32, 862 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Miwadinou, A.V. Monwanoua, J. Yovoganc, L.A. Hinvia, P.R. Nwagoum Tuwae, J.B. Chabi Oroua, Chin. J. Phys. 56, 1089 (2018) CrossRefGoogle Scholar
  14. 14.
    H. Resat, L. Petzold, M.F. Pettigrew, Methods Mol. Biol. 541, 311 (2009) CrossRefGoogle Scholar
  15. 15.
    N.B. Janson, Contemp. Phys. 20, 1 (2010) Google Scholar
  16. 16.
    R. Testylier, T. Dang, EPTCS 92, 16 (2010) CrossRefGoogle Scholar
  17. 17.
    J. Preto, M. Pettini, HAL Archives ID: hal-00662717 (2012) Google Scholar
  18. 18.
    S. Motta, F. Pappalardo, Brief. Bioinform. 14, 411 (2012) CrossRefGoogle Scholar
  19. 19.
    V. Gorodetskyi, M. Osadchuk, Phys. Lett. A 377, 703 (2013) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Singh, N. Kapoor, Adv. Biol. 2014, 703 (2014) Google Scholar
  21. 21.
    F. Battiston, Chaos 27, 047404 (2017) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Scharf, Chaos Soliton. Fract. 95, 42 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    U. Deichmann, Chaos Soliton. Fract. 99, 1 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    M. F. Danca, N. Kuznetsov, Chaos Solitons Fract. 103, 144 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    P.S. Shabestari, S. Panahi, B. Hatef, S. Jafari, J.C. Sprott, Chaos Solitons Fract. 112, 44 (2018) ADSCrossRefGoogle Scholar
  26. 26.
    H. Shang, Z. Jiang, R. Xu, D. Wang, P. Wu, Y. Chen, Cogn. Syst. Res. (2018),  https://doi.org/10.1016/j.cogsys.2018.04.009
  27. 27.
    U.E. Vincent, Phys. Lett. A 343, 133 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    P. P. Singh, J. P. Singh, B. K. Roy, IETE J. Res. 63, 1 (2017) CrossRefGoogle Scholar
  29. 29.
    P.P. Singh, B.K. Roy, Ann. Rev. Control 45, 152 (2018) CrossRefGoogle Scholar
  30. 30.
    P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Appl. 8, 995 (2015) Google Scholar
  31. 31.
    P.P. Singh, J.P. Singh, B.K. Roy, Chaos Soliton. Fract. 69, 31 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    P.P. Singh, J.P. Singh, B.K. Roy, IFAC Proc. 47, 287 (2014) CrossRefGoogle Scholar
  33. 33.
    C.C. Kong, S.H. Chen, Chin. Phys. B 18, 91 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    P.P. Singh, J.P. Singh, B.K. Roy, Int. J. Control Theory Appl. 9, 171 (2016) Google Scholar
  35. 35.
    M. Kristic, I. Kanellakopoulos, P. Kokotovic, in Nonlinear and Adaptive Control Design (John Willey and Sons Inc., New York, 1995), pp. 221–248 Google Scholar
  36. 36.
    P.P. Singh, B.K. Roy, in Nonlinear Systems: Design, Applications and Analysis (Nova Science Publishers, New York, 2007), pp. 101–146 Google Scholar
  37. 37.
    P.P. Singh, J.P. Singh, B.K. Roy, Res. Rev.: J. Phys. 3, 1 (2014) Google Scholar
  38. 38.
    X. Tan, J. Zhang, Y. Yang, Chaos Soliton. Fract. 16, 37 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    U.E. Vincent, A.N. Njah, J.A. Laoye, Physica D 231, 130 (2007) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M. T. Yassen, Chaos Soliton. Fract. 27, 537 (2006) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    B.A. Idowu, U.E. Vincent, A.N. Njah, Int. J. Nonlinear Sci. 5, 11 (2008) MathSciNetGoogle Scholar
  42. 42.
    S. Mascolo, in Proceedings of the 36IEEE CDC San Diego (2008), Vol. 5, p. 150 Google Scholar
  43. 43.
    M.K. Shukla, B.B. Sharma, Chaos Soliton. Fract. 98, 56 (2017) ADSCrossRefGoogle Scholar
  44. 44.
    P.P. Singh, B.K. Roy, H. Handa, in Ann. IEEE India Conf. (INDICON), Bombay (2013) Vol. 10, pp. 1–6 Google Scholar
  45. 45.
    P.P. Singh, B.K. Roy, in Proceedings of Indian Control Conference (ICC), Kanpur (2015) Vol. 1, pp. 108–111 Google Scholar
  46. 46.
    F Wang, C. Liu, Physica D 225, 55 (2007) ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Y. P. Tian, X. Yu, J. Franklin Institute 337, 771 (2009) CrossRefGoogle Scholar
  48. 48.
    B.A. Idowu, U.E. Vincent, A.N. Njah, Chaos Soliton. Fract. 39, 2322 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, IEEE Trans. Autom. Control 45, 1893 (2012) CrossRefGoogle Scholar
  50. 50.
    H.J. Freund, Phys. Rev. E 63, 387 (1983) Google Scholar
  51. 51.
    W. Singer, C. Gray, Annu. Rev. Neurosci. 18, 555 (1995) CrossRefGoogle Scholar
  52. 52.
    S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Nature 370, 615 (1994) ADSCrossRefGoogle Scholar
  53. 53.
    E.A. Jackson, I. Grosu, Physica D 85, 1 (1995) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNITShillongIndia
  2. 2.Department of Electrical EngineeringNITSilcharIndia

Personalised recommendations