Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 971–981 | Cite as

Bifurcations, chaos and synchronization of a predator–prey system with Allee effect and seasonally forcing in prey’s growth rate

  • Afef Ben Saad
  • Olfa Boubaker
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

In this paper, a predator–prey model with Allee effect and seasonally forcing in the prey’s growth rate is introduced and analysed. Nonlinear analysis, using equilibrium points computed via Symbolic Math software tools, bifurcation diagrams, phase diagrams, Lyapunov exponents and Kaplan–Yorke dimension, proves that such effects lead to undesirable biological dynamics including chaos behaviours. In order to establish a certain balance in the ecosystem and avoid chaotic dynamics, the biological system is controlled in order to follow an unforced reference model via a synchronization approach. Simulation results prove the efficiency of the proposed approach to allow the predator–prey system regaining natural dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mmoona, A. Salman, A. Muhammad, A. Faizan, A. Asad, Eur. Phys. J. Plus 132, 399 (2017) CrossRefGoogle Scholar
  2. 2.
    S. Tang, B. Tang, A. Wang, Y. Xiao, Nonlinear Dyn. 81, 19 (2015) Google Scholar
  3. 3.
    A.D. Bazykin, Nonlinear Dynamics of Interacting Populations (World Scientific, Singapore, 1998) Google Scholar
  4. 4.
    R. Yang, C. Zhang, Nonlinear Dyn. 87, 16 (2017) Google Scholar
  5. 5.
    S. Zhang, X. Meng, T. Feng, T. Zhang, Nonlinear Anal. Hybrid Sys. 26, 19 (2017) CrossRefGoogle Scholar
  6. 6.
    L. Berec, V. Bernhauerov, B. Boldin, J. Theor. Biol. 441, 10 (2018) CrossRefGoogle Scholar
  7. 7.
    D. Levy, H. A. Harrington, R.A. Van Gorder, J. Theor. Biol. 396, 19 (2016) CrossRefGoogle Scholar
  8. 8.
    S. Chen, J. Yua, J. Diff. Equa. 260, 17 (2016) ADSGoogle Scholar
  9. 9.
    E. Krichenb, J. Harmand, M. Torrijos, J.J. Godon, N. Bernet, A. Rapaport, Biochem. Eng. J. 130, 20 (2018) Google Scholar
  10. 10.
    S. Chen, J. Wei, J. Yu, Nonlinear Anal. Real World Appl. 39, 25 (2018) Google Scholar
  11. 11.
    P.A. Stephens, W.J. Sutherland, Trends Ecol. Evol. 14, 5 (1999) CrossRefGoogle Scholar
  12. 12.
    Q. Din, Int. J. Dynam. Control 2017, 16 (2017) Google Scholar
  13. 13.
    S. Vaidyanathan, Int. J. PharmTech. Res. 9, 14 (2016) Google Scholar
  14. 14.
    S.T. Kingni, V.T. Pham, F. Nazarimehr, S. Jafari, Int. J. Sys. Sci. 49, 617 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    C.S. Nayak, A. Bhowmik, P.D. Prasad, S. Pati, K. K. Choudhury, K.K. Majumdar, J. Clin. Neurophysiol. 34, 7 (2017) CrossRefGoogle Scholar
  16. 16.
    H. Bao, J. Cao, Nonlinear Anal. Model. Control 21, 19 (2016) Google Scholar
  17. 17.
    W. Han, J. Yang, Chaos Soliton. Fract. 106, 5 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    A. Ben Saad, O. Boubaker, in Fractional Order Control and Synchronization of Chaotic Systems (Springer, Cham, 2017), Vol. 21 Google Scholar
  19. 19.
    K.T. AAlligood, T.D. Sauer, D.A. Yorke, in Chaos. Textbooks in Mathematical Sciences (Springer, New York, 1997), Vol. 3 Google Scholar
  20. 20.
    S. Jafari, A. Ahmadi, S. Panahi, K. Rajagopal, Chaos Soliton. Fract. 108, 182 (2018) ADSCrossRefGoogle Scholar
  21. 21.
    S. Jafari, A. Ahmadi, A.J. Khalaf, H.R. Abdolmohammadi, V.T. Pham, F.E. Alsaadi, Int. J. Elec. Commun. 89, 131 (2018) CrossRefGoogle Scholar
  22. 22.
    I.C. Sprott, S. Jafari, A.J. Khalaf, T. Kapitaniak, Eur. Phys. J. Special Topics 226, 1979 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Applied Sciences and Technology, INSATTunis CedexTunisia

Personalised recommendations